These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 33174975)
1. Transcriptional profile of genes involved in the production of terpenes and glyceollins in response to biotic stresses in soybean. Parmezan TR; Brito Júnior SL; Carvalho K; Aquino M; Birkett M; Pickett J; Nunes EO; Abdelnor RV; Campo CBH; Marcelino-Guimarães FC Genet Mol Biol; 2020; 43(4):e20190388. PubMed ID: 33174975 [TBL] [Abstract][Full Text] [Related]
2. Soybean leaves transcriptomic data dissects the phenylpropanoid pathway genes as a defence response against Phakopsora pachyrhizi. Hossain MZ; Ishiga Y; Yamanaka N; Ogiso-Tanaka E; Yamaoka Y Plant Physiol Biochem; 2018 Nov; 132():424-433. PubMed ID: 30290334 [TBL] [Abstract][Full Text] [Related]
4. Untargeted Metabolomics Analysis by UHPLC-MS/MS of Soybean Plant in a Compatible Response to Silva E; Perez da Graça J; Porto C; Martin do Prado R; Nunes E; Corrêa Marcelino-Guimarães F; Conrado Meyer M; Jorge Pilau E Metabolites; 2021 Mar; 11(3):. PubMed ID: 33808519 [No Abstract] [Full Text] [Related]
5. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. Jahan MA; Harris B; Lowery M; Coburn K; Infante AM; Percifield RJ; Ammer AG; Kovinich N BMC Genomics; 2019 Feb; 20(1):149. PubMed ID: 30786857 [TBL] [Abstract][Full Text] [Related]
7. Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin. Akashi T; Sasaki K; Aoki T; Ayabe S; Yazaki K Plant Physiol; 2009 Feb; 149(2):683-93. PubMed ID: 19091879 [TBL] [Abstract][Full Text] [Related]
8. Differential abilities of Korean soybean varieties to biosynthesize glyceollins by biotic and abiotic elicitors. Park IS; Kim HJ; Jeong YS; Kim WK; Kim JS Food Sci Biotechnol; 2017; 26(1):255-261. PubMed ID: 30263536 [TBL] [Abstract][Full Text] [Related]
9. Genomic and transcriptomic characterization of the transcription factor family R2R3-MYB in soybean and its involvement in the resistance responses to Phakopsora pachyrhizi. Aoyagi LN; Lopes-Caitar VS; de Carvalho MCCG; Darben LM; Polizel-Podanosqui A; Kuwahara MK; Nepomuceno AL; Abdelnoor RV; Marcelino-Guimarães FC Plant Sci; 2014 Dec; 229():32-42. PubMed ID: 25443831 [TBL] [Abstract][Full Text] [Related]
10. The importance of phenolic metabolism to limit the growth of Phakopsora pachyrhizi. Lygin AV; Li S; Vittal R; Widholm JM; Hartman GL; Lozovaya VV Phytopathology; 2009 Dec; 99(12):1412-20. PubMed ID: 19900008 [TBL] [Abstract][Full Text] [Related]
11. Pathogenic variation of Phakopsora pachyrhizi infecting soybean in Nigeria. Twizeyimana M; Ojiambo PS; Sonder K; Ikotun T; Hartman GL; Bandyopadhyay R Phytopathology; 2009 Apr; 99(4):353-61. PubMed ID: 19271976 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome-based analyses of phosphite-mediated suppression of rust pathogens Puccinia emaculata and Phakopsora pachyrhizi and functional characterization of selected fungal target genes. Gill US; Sun L; Rustgi S; Tang Y; von Wettstein D; Mysore KS Plant J; 2018 Mar; 93(5):894-904. PubMed ID: 29315949 [TBL] [Abstract][Full Text] [Related]
14. Differential Responses of Resistant Soybean Entries to Isolates of Phakopsora pachyrhizi. Pham TA; Miles MR; Frederick RD; Hill CB; Hartman GL Plant Dis; 2009 Mar; 93(3):224-228. PubMed ID: 30764187 [TBL] [Abstract][Full Text] [Related]
15. Secondary Metabolites of Dos Santos IMO; Abe VY; de Carvalho K; Barazetti AR; Simionato AS; de Almeida Pega GE; Matis SH; Cano BG; Cely MVT; Marcelino-Guimarães FC; Chryssafidis AL; Andrade G Plants (Basel); 2021 Jul; 10(8):. PubMed ID: 34451540 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway. Morales AMAP; O Rourke JA; van de Mortel M; Scheider KT; Bancroft TJ; Bor M AZ; Nelson RT; Nettleton D; Baum TJ; Shoemaker RC; Frederick RD; Abdelnoor RV; Pedley KF; Whitham SA; Graham MA Funct Plant Biol; 2013 Oct; 40(10):1029-1047. PubMed ID: 32481171 [TBL] [Abstract][Full Text] [Related]
17. Pathogenic Variation of Phakopsora pachyrhizi Isolates on Soybean in the United States from 2006 to 2009. Twizeyimana M; Hartman GL Plant Dis; 2012 Jan; 96(1):75-81. PubMed ID: 30731859 [TBL] [Abstract][Full Text] [Related]
18. Identification of a second Asian soybean rust resistance gene in Hyuuga soybean. Kendrick MD; Harris DK; Ha BK; Hyten DL; Cregan PB; Frederick RD; Boerma HR; Pedley KF Phytopathology; 2011 May; 101(5):535-43. PubMed ID: 21244223 [TBL] [Abstract][Full Text] [Related]
19. Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis. Tsaballa A; Nikolaidis A; Trikka F; Ignea C; Kampranis SC; Makris AM; Argiriou A BMC Genomics; 2015 Jul; 16(1):504. PubMed ID: 26149407 [TBL] [Abstract][Full Text] [Related]
20. Identification of the soybean HyPRP family and specific gene response to Asian soybean rust disease. Neto LB; de Oliveira RR; Wiebke-Strohm B; Bencke M; Weber RL; Cabreira C; Abdelnoor RV; Marcelino FC; Zanettini MH; Passaglia LM Genet Mol Biol; 2013 Jul; 36(2):214-24. PubMed ID: 23885204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]