These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33174975)

  • 1. Transcriptional profile of genes involved in the production of terpenes and glyceollins in response to biotic stresses in soybean.
    Parmezan TR; Brito Júnior SL; Carvalho K; Aquino M; Birkett M; Pickett J; Nunes EO; Abdelnor RV; Campo CBH; Marcelino-Guimarães FC
    Genet Mol Biol; 2020; 43(4):e20190388. PubMed ID: 33174975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soybean leaves transcriptomic data dissects the phenylpropanoid pathway genes as a defence response against Phakopsora pachyrhizi.
    Hossain MZ; Ishiga Y; Yamanaka N; Ogiso-Tanaka E; Yamaoka Y
    Plant Physiol Biochem; 2018 Nov; 132():424-433. PubMed ID: 30290334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-isogenic soybean lines carrying Asian soybean rust resistance genes for practical pathogenicity validation.
    Kashiwa T; Muraki Y; Yamanaka N
    Sci Rep; 2020 Aug; 10(1):13270. PubMed ID: 32764613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Untargeted Metabolomics Analysis by UHPLC-MS/MS of Soybean Plant in a Compatible Response to
    Silva E; Perez da Graça J; Porto C; Martin do Prado R; Nunes E; Corrêa Marcelino-Guimarães F; Conrado Meyer M; Jorge Pilau E
    Metabolites; 2021 Mar; 11(3):. PubMed ID: 33808519
    [No Abstract]   [Full Text] [Related]  

  • 5. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean.
    Jahan MA; Harris B; Lowery M; Coburn K; Infante AM; Percifield RJ; Ammer AG; Kovinich N
    BMC Genomics; 2019 Feb; 20(1):149. PubMed ID: 30786857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of four soybean bZIP genes during Phakopsora pachyrhizi infection.
    Alves MS; Soares ZG; Vidigal PM; Barros EG; Poddanosqui AM; Aoyagi LN; Abdelnoor RV; Marcelino-Guimarães FC; Fietto LG
    Funct Integr Genomics; 2015 Nov; 15(6):685-96. PubMed ID: 26013145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin.
    Akashi T; Sasaki K; Aoki T; Ayabe S; Yazaki K
    Plant Physiol; 2009 Feb; 149(2):683-93. PubMed ID: 19091879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential abilities of Korean soybean varieties to biosynthesize glyceollins by biotic and abiotic elicitors.
    Park IS; Kim HJ; Jeong YS; Kim WK; Kim JS
    Food Sci Biotechnol; 2017; 26(1):255-261. PubMed ID: 30263536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic and transcriptomic characterization of the transcription factor family R2R3-MYB in soybean and its involvement in the resistance responses to Phakopsora pachyrhizi.
    Aoyagi LN; Lopes-Caitar VS; de Carvalho MCCG; Darben LM; Polizel-Podanosqui A; Kuwahara MK; Nepomuceno AL; Abdelnoor RV; Marcelino-Guimarães FC
    Plant Sci; 2014 Dec; 229():32-42. PubMed ID: 25443831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of phenolic metabolism to limit the growth of Phakopsora pachyrhizi.
    Lygin AV; Li S; Vittal R; Widholm JM; Hartman GL; Lozovaya VV
    Phytopathology; 2009 Dec; 99(12):1412-20. PubMed ID: 19900008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenic variation of Phakopsora pachyrhizi infecting soybean in Nigeria.
    Twizeyimana M; Ojiambo PS; Sonder K; Ikotun T; Hartman GL; Bandyopadhyay R
    Phytopathology; 2009 Apr; 99(4):353-61. PubMed ID: 19271976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Arabidopsis non-host defence-associated coumarin scopoletin protects soybean from Asian soybean rust.
    Beyer SF; Beesley A; Rohmann PFW; Schultheiss H; Conrath U; Langenbach CJG
    Plant J; 2019 Aug; 99(3):397-413. PubMed ID: 31148306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-based analyses of phosphite-mediated suppression of rust pathogens Puccinia emaculata and Phakopsora pachyrhizi and functional characterization of selected fungal target genes.
    Gill US; Sun L; Rustgi S; Tang Y; von Wettstein D; Mysore KS
    Plant J; 2018 Mar; 93(5):894-904. PubMed ID: 29315949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Responses of Resistant Soybean Entries to Isolates of Phakopsora pachyrhizi.
    Pham TA; Miles MR; Frederick RD; Hill CB; Hartman GL
    Plant Dis; 2009 Mar; 93(3):224-228. PubMed ID: 30764187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary Metabolites of
    Dos Santos IMO; Abe VY; de Carvalho K; Barazetti AR; Simionato AS; de Almeida Pega GE; Matis SH; Cano BG; Cely MVT; Marcelino-Guimarães FC; Chryssafidis AL; Andrade G
    Plants (Basel); 2021 Jul; 10(8):. PubMed ID: 34451540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway.
    Morales AMAP; O Rourke JA; van de Mortel M; Scheider KT; Bancroft TJ; Bor M AZ; Nelson RT; Nettleton D; Baum TJ; Shoemaker RC; Frederick RD; Abdelnoor RV; Pedley KF; Whitham SA; Graham MA
    Funct Plant Biol; 2013 Oct; 40(10):1029-1047. PubMed ID: 32481171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenic Variation of Phakopsora pachyrhizi Isolates on Soybean in the United States from 2006 to 2009.
    Twizeyimana M; Hartman GL
    Plant Dis; 2012 Jan; 96(1):75-81. PubMed ID: 30731859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a second Asian soybean rust resistance gene in Hyuuga soybean.
    Kendrick MD; Harris DK; Ha BK; Hyten DL; Cregan PB; Frederick RD; Boerma HR; Pedley KF
    Phytopathology; 2011 May; 101(5):535-43. PubMed ID: 21244223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis.
    Tsaballa A; Nikolaidis A; Trikka F; Ignea C; Kampranis SC; Makris AM; Argiriou A
    BMC Genomics; 2015 Jul; 16(1):504. PubMed ID: 26149407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the soybean HyPRP family and specific gene response to Asian soybean rust disease.
    Neto LB; de Oliveira RR; Wiebke-Strohm B; Bencke M; Weber RL; Cabreira C; Abdelnoor RV; Marcelino FC; Zanettini MH; Passaglia LM
    Genet Mol Biol; 2013 Jul; 36(2):214-24. PubMed ID: 23885204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.