These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 33175006)
1. Antifungal efficacy of Moringa oleifera leaf and seed extracts against Botrytis cinerea causing gray mold disease of tomato (Solanum lycopersicum L.). Ahmadu T; Ahmad K; Ismail SI; Rashed O; Asib N; Omar D Braz J Biol; 2021; 81(4):1007-1022. PubMed ID: 33175006 [TBL] [Abstract][Full Text] [Related]
2. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea. Maung CEH; Lee HG; Cho JY; Kim KY World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104 [TBL] [Abstract][Full Text] [Related]
3. Bio-perfume guns: Antifungal volatile activity of Bacillus sp. LNXM12 against postharvest pathogen Botrytis cinerea in tomato and strawberry. Khan AR; Ali Q; Ayaz M; Bilal MS; Tariq H; El-Komy MH; Gu Q; Wu H; Vater J; Gao X Pestic Biochem Physiol; 2024 Aug; 203():105995. PubMed ID: 39084769 [TBL] [Abstract][Full Text] [Related]
5. Antifungal Activity and Phytochemical Screening of Vernonia amygdalina Extract against Botrytis cinerea Causing Gray Mold Disease on Tomato Fruits. Yusoff SF; Haron FF; Tengku Muda Mohamed M; Asib N; Sakimin SZ; Abu Kassim F; Ismail SI Biology (Basel); 2020 Sep; 9(9):. PubMed ID: 32932993 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. Gao P; Qin J; Li D; Zhou S PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571 [TBL] [Abstract][Full Text] [Related]
7. Phytochemical screening of Moringa oleifera leaf extracts and their antimicrobial activities. Bagheri G; Martorell M; Ramírez-Alarcón K; Salehi B; Sharifi-Rad J Cell Mol Biol (Noisy-le-grand); 2020 Apr; 66(1):20-26. PubMed ID: 32359378 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. Fang XL; Li ZZ; Wang YH; Zhang X J Appl Microbiol; 2011 Jul; 111(1):145-54. PubMed ID: 21554568 [TBL] [Abstract][Full Text] [Related]
9. Correlations between phytochemical fingerprints of Moringa oleifera leaf extracts and their antioxidant activities revealed by chemometric analysis. Xu Y; Chen G; Guo M Phytochem Anal; 2021 Sep; 32(5):698-709. PubMed ID: 33319431 [TBL] [Abstract][Full Text] [Related]
10. Discovery of Natural Rosin Derivatives Containing Oxime Ester Moieties as Potential Antifungal Agents to Control Tomato Gray Mold Caused by Gao Y; Xu R; Gu S; Chen K; Li J; He X; Shang S; Song Z; Song J J Agric Food Chem; 2022 May; 70(18):5551-5560. PubMed ID: 35502453 [TBL] [Abstract][Full Text] [Related]
11. Bioassay-guided isolation, identification and activity evaluation of antifungal compounds from Safa R; Walid Y; Affes TG; Hammami M; Sellami IH Int J Environ Health Res; 2024 Jun; 34(6):2593-2604. PubMed ID: 37767807 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931 [TBL] [Abstract][Full Text] [Related]
13. Identification of Potential Targets for Thymidylate Synthase and Amp-C β-lactamase from Non-alkaloidal Fractions of Moringa oleifera Leaves. Kumari C; Virk AK; Kumari S; Gupta T; Rolta R; Li X; Kulshrestha S Curr Pharm Biotechnol; 2021; 22(15):2085-2093. PubMed ID: 33430724 [TBL] [Abstract][Full Text] [Related]
14. Leaf Extracts of Shafiq NE; Mahdee AF; Mohammed Hasan ZY ScientificWorldJournal; 2024; 2024():6658164. PubMed ID: 38450244 [TBL] [Abstract][Full Text] [Related]
15. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea. Yang D; Shi H; Zhang K; Liu X; Ma L Int J Food Microbiol; 2023 Mar; 388():110089. PubMed ID: 36682298 [TBL] [Abstract][Full Text] [Related]
16. Effects of linalool on Wang QF; Wang XY; Li HS; Yang XY; Zhang RM; Gong B; Li XM; Shi QH Ying Yong Sheng Tai Xue Bao; 2023 Jan; 34(1):213-220. PubMed ID: 36799396 [TBL] [Abstract][Full Text] [Related]
17. Perillaldehyde Functions as a Potential Antifungal Agent by Triggering Metacaspase-Independent Apoptosis in Botrytis cinerea. Wang G; Wang Y; Wang K; Zhao H; Liu M; Liang W; Li D Microbiol Spectr; 2023 Jun; 11(3):e0052623. PubMed ID: 37191530 [TBL] [Abstract][Full Text] [Related]
18. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L. Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193 [TBL] [Abstract][Full Text] [Related]
19. Chemical Characterization and Nutritional Markers of South African Bassey K; Mabowe M; Mothibe M; Witika BA Molecules; 2022 Sep; 27(18):. PubMed ID: 36144484 [No Abstract] [Full Text] [Related]
20. Total Phenolics, Total Flavonoids, Antioxidant Capacities, and Volatile Compounds Gas Chromatography-Mass Spectrometry Profiling of Adebayo IA; Arsad H; Samian MR Pharmacogn Mag; 2018; 14(54):191-194. PubMed ID: 29720830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]