BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33175006)

  • 1. Antifungal efficacy of Moringa oleifera leaf and seed extracts against Botrytis cinerea causing gray mold disease of tomato (Solanum lycopersicum L.).
    Ahmadu T; Ahmad K; Ismail SI; Rashed O; Asib N; Omar D
    Braz J Biol; 2021; 81(4):1007-1022. PubMed ID: 33175006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochemical Analysis, Antimutagenic and Antiviral Activity of
    Rahayu I; Timotius KH
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807260
    [No Abstract]   [Full Text] [Related]  

  • 4. Antifungal Activity and Phytochemical Screening of Vernonia amygdalina Extract against Botrytis cinerea Causing Gray Mold Disease on Tomato Fruits.
    Yusoff SF; Haron FF; Tengku Muda Mohamed M; Asib N; Sakimin SZ; Abu Kassim F; Ismail SI
    Biology (Basel); 2020 Sep; 9(9):. PubMed ID: 32932993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.
    Gao P; Qin J; Li D; Zhou S
    PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytochemical screening of Moringa oleifera leaf extracts and their antimicrobial activities.
    Bagheri G; Martorell M; Ramírez-Alarcón K; Salehi B; Sharifi-Rad J
    Cell Mol Biol (Noisy-le-grand); 2020 Apr; 66(1):20-26. PubMed ID: 32359378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea.
    Fang XL; Li ZZ; Wang YH; Zhang X
    J Appl Microbiol; 2011 Jul; 111(1):145-54. PubMed ID: 21554568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations between phytochemical fingerprints of Moringa oleifera leaf extracts and their antioxidant activities revealed by chemometric analysis.
    Xu Y; Chen G; Guo M
    Phytochem Anal; 2021 Sep; 32(5):698-709. PubMed ID: 33319431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of Natural Rosin Derivatives Containing Oxime Ester Moieties as Potential Antifungal Agents to Control Tomato Gray Mold Caused by
    Gao Y; Xu R; Gu S; Chen K; Li J; He X; Shang S; Song Z; Song J
    J Agric Food Chem; 2022 May; 70(18):5551-5560. PubMed ID: 35502453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioassay-guided isolation, identification and activity evaluation of antifungal compounds from
    Safa R; Walid Y; Affes TG; Hammami M; Sellami IH
    Int J Environ Health Res; 2024 Jun; 34(6):2593-2604. PubMed ID: 37767807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Potential Targets for Thymidylate Synthase and Amp-C β-lactamase from Non-alkaloidal Fractions of Moringa oleifera Leaves.
    Kumari C; Virk AK; Kumari S; Gupta T; Rolta R; Li X; Kulshrestha S
    Curr Pharm Biotechnol; 2021; 22(15):2085-2093. PubMed ID: 33430724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf Extracts of
    Shafiq NE; Mahdee AF; Mohammed Hasan ZY
    ScientificWorldJournal; 2024; 2024():6658164. PubMed ID: 38450244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea.
    Yang D; Shi H; Zhang K; Liu X; Ma L
    Int J Food Microbiol; 2023 Mar; 388():110089. PubMed ID: 36682298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of linalool on
    Wang QF; Wang XY; Li HS; Yang XY; Zhang RM; Gong B; Li XM; Shi QH
    Ying Yong Sheng Tai Xue Bao; 2023 Jan; 34(1):213-220. PubMed ID: 36799396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perillaldehyde Functions as a Potential Antifungal Agent by Triggering Metacaspase-Independent Apoptosis in Botrytis cinerea.
    Wang G; Wang Y; Wang K; Zhao H; Liu M; Liang W; Li D
    Microbiol Spectr; 2023 Jun; 11(3):e0052623. PubMed ID: 37191530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.
    Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J
    Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Characterization and Nutritional Markers of South African
    Bassey K; Mabowe M; Mothibe M; Witika BA
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144484
    [No Abstract]   [Full Text] [Related]  

  • 19. Total Phenolics, Total Flavonoids, Antioxidant Capacities, and Volatile Compounds Gas Chromatography-Mass Spectrometry Profiling of
    Adebayo IA; Arsad H; Samian MR
    Pharmacogn Mag; 2018; 14(54):191-194. PubMed ID: 29720830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moringa oleifera Nanoparticles Demonstrate Antifungal Activity Against Plant Pathogenic Fungi.
    Jenish A; Ranjani S; Hemalatha S
    Appl Biochem Biotechnol; 2022 Oct; 194(10):4959-4970. PubMed ID: 35674924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.