BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33175241)

  • 1. Time-course transcriptomics reveals that amino acids catabolism plays a key role in toxinogenesis and morphology in Clostridium tetani.
    Orellana CA; Zaragoza NE; Licona-Cassani C; Palfreyman RW; Cowie N; Moonen G; Moutafis G; Power J; Nielsen LK; Marcellin E
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1059-1073. PubMed ID: 33175241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetanus toxin production is triggered by the transition from amino acid consumption to peptides.
    Licona-Cassani C; Steen JA; Zaragoza NE; Moonen G; Moutafis G; Hodson MP; Power J; Nielsen LK; Marcellin E
    Anaerobe; 2016 Oct; 41():113-124. PubMed ID: 27492724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetanus Toxin Synthesis is Under the Control of A Complex Network of Regulatory Genes in
    Chapeton-Montes D; Plourde L; Deneve C; Garnier D; Barbirato F; Colombié V; Demay S; Haustant G; Gorgette O; Schmitt C; Thouvenot C; Brüggemann H; Popoff MR
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32429286
    [No Abstract]   [Full Text] [Related]  

  • 4. TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to botR.
    Marvaud JC; Eisel U; Binz T; Niemann H; Popoff MR
    Infect Immun; 1998 Dec; 66(12):5698-702. PubMed ID: 9826344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into Clostridium tetani: From genome to bioreactors.
    Garrigues L; Do TD; Bideaux C; Guillouet SE; Meynial-Salles I
    Biotechnol Adv; 2022; 54():107781. PubMed ID: 34029623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen-gas bubbling during the cultivation of Clostridium tetani produces a higher yield of tetanus toxin for the preparation of its toxoid.
    De Luca MM; Abeiro HD; Bernagozzi JA; Basualdo JA
    Microbiol Immunol; 1997; 41(2):161-3. PubMed ID: 9087958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative pathogenomics of Clostridium tetani.
    Cohen JE; Wang R; Shen RF; Wu WW; Keller JE
    PLoS One; 2017; 12(8):e0182909. PubMed ID: 28800585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani.
    Connan C; Denève C; Mazuet C; Popoff MR
    Toxicon; 2013 Dec; 75():90-100. PubMed ID: 23769754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani.
    Raffestin S; Dupuy B; Marvaud JC; Popoff MR
    Mol Microbiol; 2005 Jan; 55(1):235-49. PubMed ID: 15612931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The population structure of Clostridium tetani deduced from its pan-genome.
    Chapeton-Montes D; Plourde L; Bouchier C; Ma L; Diancourt L; Criscuolo A; Popoff MR; Brüggemann H
    Sci Rep; 2019 Aug; 9(1):11220. PubMed ID: 31375706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomics of Clostridium tetani.
    Brüggemann H; Brzuszkiewicz E; Chapeton-Montes D; Plourde L; Speck D; Popoff MR
    Res Microbiol; 2015 May; 166(4):326-31. PubMed ID: 25638019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative pathogenomic analysis reveals a highly tetanus toxin-producing clade of
    Shitada C; Sekizuka T; Yamamoto A; Sakamoto C; Hashino M; Kuroda M; Takahashi M
    mSphere; 2023 Dec; 8(6):e0036923. PubMed ID: 38009947
    [No Abstract]   [Full Text] [Related]  

  • 13. Detection of Clostridium tetani in human clinical samples using tetX specific primers targeting the neurotoxin.
    Ganesh M; Sheikh NK; Shah P; Mehetre G; Dharne MS; Nagoba BS
    J Infect Public Health; 2016; 9(1):105-9. PubMed ID: 26220795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genome sequence of Clostridium tetani, the causative agent of tetanus disease.
    Bruggemann H; Baumer S; Fricke WF; Wiezer A; Liesegang H; Decker I; Herzberg C; Martinez-Arias R; Merkl R; Henne A; Gottschalk G
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):1316-21. PubMed ID: 12552129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a non-coding RNA and its putative involvement in the regulation of tetanus toxin synthesis in Clostridium tetani.
    Brüggemann H; Chapeton-Montes D; Plourde L; Popoff MR
    Sci Rep; 2021 Feb; 11(1):4157. PubMed ID: 33603121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of medium composition on the production of tetanus toxin by Clostridium tetani.
    Fratelli F; Siquini TJ; Prado SM; Higashi HG; Converti A; de Carvalho JC
    Biotechnol Prog; 2005; 21(3):756-61. PubMed ID: 15932253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fed-batch production of tetanus toxin by Clostridium tetani.
    Fratelli F; Siquini TJ; de Abreu ME; Higashi HG; Converti A; de Carvalho JC
    Biotechnol Prog; 2010; 26(1):88-92. PubMed ID: 19856382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current concepts in the management of Clostridium tetani infection.
    Brook I
    Expert Rev Anti Infect Ther; 2008 Jun; 6(3):327-36. PubMed ID: 18588497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous production of Clostridium tetani toxin.
    Zacharias B; Björklund M
    Appl Microbiol; 1968 Jan; 16(1):69-72. PubMed ID: 4865906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Studies on the amino acids transformation of the liquid 10-days-old culture of Clostridium tetani. VI. Comparative quantitative determination of the free amino acid media and filtrates of the 10-day-old culture of Clostridium tetani].
    Klimek J
    Ann Univ Mariae Curie Sklodowska Med; 1965; 20():327-35. PubMed ID: 5334738
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.