BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 33175402)

  • 1. Plant intraspecific competition and growth stage alter carbon and nitrogen mineralization in the rhizosphere.
    Sun Y; Zang H; Splettstößer T; Kumar A; Xu X; Kuzyakov Y; Pausch J
    Plant Cell Environ; 2021 Apr; 44(4):1231-1242. PubMed ID: 33175402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition.
    Yin L; Dijkstra FA; Wang P; Zhu B; Cheng W
    New Phytol; 2018 May; 218(3):1036-1048. PubMed ID: 29512165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated rhizosphere deposits induce microbial N-mining that may accelerate shrubification in the subarctic.
    Hicks LC; Leizeaga A; Rousk K; Michelsen A; Rousk J
    Ecology; 2020 Sep; 101(9):e03094. PubMed ID: 32379897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of long-term N fertilisation on CO
    Shahbaz M; Menichetti L; Kätterer T; Börjesson G
    Sci Total Environ; 2019 Mar; 658():1539-1548. PubMed ID: 30678012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories.
    Chen R; Senbayram M; Blagodatsky S; Myachina O; Dittert K; Lin X; Blagodatskaya E; Kuzyakov Y
    Glob Chang Biol; 2014 Jul; 20(7):2356-67. PubMed ID: 24273056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization.
    Chen S; Waghmode TR; Sun R; Kuramae EE; Hu C; Liu B
    Microbiome; 2019 Oct; 7(1):136. PubMed ID: 31640813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhizosphere priming promotes plant nitrogen acquisition by microbial necromass recycling.
    Pausch J; Holz M; Zhu B; Cheng W
    Plant Cell Environ; 2024 Jun; 47(6):1987-1996. PubMed ID: 38369964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation.
    Wang X; Tang C; Severi J; Butterly CR; Baldock JA
    New Phytol; 2016 Aug; 211(3):864-73. PubMed ID: 27101777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient cycling in forests.
    Attiwill PM; Adams MA
    New Phytol; 1993 Aug; 124(4):561-582. PubMed ID: 33874438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhizosphere stoichiometry: are C : N : P ratios of plants, soils, and enzymes conserved at the plant species-level?
    Bell C; Carrillo Y; Boot CM; Rocca JD; Pendall E; Wallenstein MD
    New Phytol; 2014 Jan; 201(2):505-517. PubMed ID: 24117992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation.
    Phillips RP; Finzi AC; Bernhardt ES
    Ecol Lett; 2011 Feb; 14(2):187-94. PubMed ID: 21176050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of rhizosphere soil permeability on water and nutrient uptake by maize].
    Niu WQ; Guo C
    Ying Yong Sheng Tai Xue Bao; 2010 Nov; 21(11):2785-91. PubMed ID: 21361000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intercropping improves maize yield and nitrogen uptake by regulating nitrogen transformation and functional microbial abundance in rhizosphere soil.
    Wang Y; Zhang Y; Yang Z; Fei J; Zhou X; Rong X; Peng J; Luo G
    J Environ Manage; 2024 May; 358():120886. PubMed ID: 38648726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen addition and defoliation alter belowground carbon allocation with consequences for plant nitrogen uptake and soil organic carbon decomposition.
    Bicharanloo B; Bagheri Shirvan M; Cavagnaro TR; Keitel C; Dijkstra FA
    Sci Total Environ; 2022 Nov; 846():157430. PubMed ID: 35863579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacterial inoculation as resource conserving options for improving the soil nutrient availability and growth of maize genotypes.
    Sharma V; Prasanna R; Hossain F; Muthusamy V; Nain L; Shivay YS; Kumar S
    Arch Microbiol; 2021 Jul; 203(5):2393-2409. PubMed ID: 33661314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roots rather than shoot residues drive soil arthropod communities of arable fields.
    Scheunemann N; Digel C; Scheu S; Butenschoen O
    Oecologia; 2015 Dec; 179(4):1135-45. PubMed ID: 26267404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem.
    Weintraub MN; Scott-Denton LE; Schmidt SK; Monson RK
    Oecologia; 2007 Nov; 154(2):327-38. PubMed ID: 17657512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotypic variation in maize (Zea mays) influences rates of soil organic matter mineralization and gross nitrification.
    Mwafulirwa L; Paterson E; Cairns JE; Daniell TJ; Thierfelder C; Baggs EM
    New Phytol; 2021 Sep; 231(5):2015-2028. PubMed ID: 34096623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant growth rate and nitrogen uptake shape rhizosphere bacterial community composition and activity in an agricultural field.
    Emmett BD; Buckley DH; Drinkwater LE
    New Phytol; 2020 Jan; 225(2):960-973. PubMed ID: 31487394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles.
    Finzi AC; Abramoff RZ; Spiller KS; Brzostek ER; Darby BA; Kramer MA; Phillips RP
    Glob Chang Biol; 2015 May; 21(5):2082-94. PubMed ID: 25421798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.