These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 33175586)
1. Neuromodulation or energy failure? Metabolic limitations silence network output in the hypoxic amphibian brainstem. Adams S; Zubov T; Bueschke N; Santin JM Am J Physiol Regul Integr Comp Physiol; 2021 Feb; 320(2):R105-R116. PubMed ID: 33175586 [TBL] [Abstract][Full Text] [Related]
2. Noradrenergic modulation determines respiratory network activity during temperature changes in the in vitro brainstem of bullfrogs. Vallejo M; Santin JM; Hartzler LK Respir Physiol Neurobiol; 2018 Dec; 258():25-31. PubMed ID: 30292742 [TBL] [Abstract][Full Text] [Related]
3. Development of the respiratory response to hypoxia in the isolated brainstem of the bullfrog Rana catesbeiana. Winmill RE; Chen AK; Hedrick MS J Exp Biol; 2005 Jan; 208(Pt 2):213-22. PubMed ID: 15634841 [TBL] [Abstract][Full Text] [Related]
4. Noradrenergic modulation of respiratory motor output during tadpole development: Role of alpha-adrenoceptors. Fournier S; Kinkead R J Exp Biol; 2006 Sep; 209(Pt 18):3685-94. PubMed ID: 16943508 [TBL] [Abstract][Full Text] [Related]
5. Nitric oxide as a modulator of central respiratory rhythm in the isolated brainstem of the bullfrog (Rana catesbeiana). Hedrick MS; Morales RD Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):243-51. PubMed ID: 10665377 [TBL] [Abstract][Full Text] [Related]
6. Developmental changes in central O2 chemoreflex in Rana catesbeiana: the role of noradrenergic modulation. Fournier S; Allard M; Roussin S; Kinkead R J Exp Biol; 2007 Sep; 210(Pt 17):3015-26. PubMed ID: 17704076 [TBL] [Abstract][Full Text] [Related]
7. Intrinsic optical signals in respiratory brain stem regions of mice: neurotransmitters, neuromodulators, and metabolic stress. Haller M; Mironov SL; Richter DW J Neurophysiol; 2001 Jul; 86(1):412-21. PubMed ID: 11431521 [TBL] [Abstract][Full Text] [Related]
8. Effects of hypoxia, anoxia, and metabolic inhibitors on KATP channels in rat femoral artery myocytes. Quayle JM; Turner MR; Burrell HE; Kamishima T Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H71-80. PubMed ID: 16489108 [TBL] [Abstract][Full Text] [Related]
9. Noradrenaline enhances angiotensin II responses via p38 MAPK activation after hypoxia/re-oxygenation in renal interlobar arteries. Kaufmann J; Martinka P; Moede O; Sendeski M; Steege A; Fähling M; Hultström M; Gaestel M; Moraes-Silva IC; Nikitina T; Liu ZZ; Zavaritskaya O; Patzak A Acta Physiol (Oxf); 2015 Apr; 213(4):920-32. PubMed ID: 25594617 [TBL] [Abstract][Full Text] [Related]
10. Preconditioning modulates susceptibility to ischemia-induced arrhythmias in the rat heart: the role of alpha-adrenergic stimulation and K(ATP) channels. Ravingerová T; Pancza D; Ziegelhoffer A; Styk J Physiol Res; 2002; 51(2):109-19. PubMed ID: 12108920 [TBL] [Abstract][Full Text] [Related]
11. Noradrenergic 'tone' determines dichotomous control of cortical spike-timing-dependent plasticity. Salgado H; Köhr G; Treviño M Sci Rep; 2012; 2():417. PubMed ID: 22639725 [TBL] [Abstract][Full Text] [Related]
12. Metabolic arrest and its regulation in anoxic eel hepatocytes. Busk M; Boutilier RG Physiol Biochem Zool; 2005; 78(6):926-36. PubMed ID: 16228932 [TBL] [Abstract][Full Text] [Related]
13. [Energy metabolism in the cerebrum and the brainstem-cerebellum of the rat brain under hypoxic conditions]. Mizukami S Hokkaido Igaku Zasshi; 1999 Nov; 74(6):431-40. PubMed ID: 10642890 [TBL] [Abstract][Full Text] [Related]
14. Activation of respiratory-related bursting in an isolated medullary section from adult bullfrogs. Saunders SE; Santin JM J Exp Biol; 2023 Sep; 226(18):. PubMed ID: 37665261 [TBL] [Abstract][Full Text] [Related]
15. Modulation of norepinephrine release by ATP-dependent K(+)-channel activators and inhibitors in guinea-pig and human isolated right atrium. Oe K; Sperlágh B; Sántha E; Matkó I; Nagashima H; Foldes FF; Vizi ES Cardiovasc Res; 1999 Jul; 43(1):125-34. PubMed ID: 10536697 [TBL] [Abstract][Full Text] [Related]
16. Temperature and pH/CO(2) modulate respiratory activity in the isolated brainstem of the bullfrog (Rana catesbeiana). Morales RD; Hedrick MS Comp Biochem Physiol A Mol Integr Physiol; 2002 Jun; 132(2):477-87. PubMed ID: 12020664 [TBL] [Abstract][Full Text] [Related]
17. Hypoxic conformance of metabolism in primary rat hepatocytes: a model of hepatic hibernation. Subramanian RM; Chandel N; Budinger GR; Schumacker PT Hepatology; 2007 Feb; 45(2):455-64. PubMed ID: 17366663 [TBL] [Abstract][Full Text] [Related]
18. Central deficiency of norepinephrine synthesis and norepinephrinergic neurotransmission contributes to seizure-induced respiratory arrest. Shen Y; Ma HX; Lu H; Zhao HT; Sun JL; Cheng Y; Zhang HH Biomed Pharmacother; 2021 Jan; 133():111024. PubMed ID: 33232929 [TBL] [Abstract][Full Text] [Related]
19. Metabolism regulates the spontaneous firing of substantia nigra pars reticulata neurons via KATP and nonselective cation channels. Lutas A; Birnbaumer L; Yellen G J Neurosci; 2014 Dec; 34(49):16336-47. PubMed ID: 25471572 [TBL] [Abstract][Full Text] [Related]
20. Energy dependence of restitution in the gastric mucosa. Cheng AM; Morrison SW; Yang DX; Hagen SJ Am J Physiol Cell Physiol; 2001 Aug; 281(2):C430-8. PubMed ID: 11443042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]