BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 33175612)

  • 1. The use of DNA methylation clock in aging research.
    He X; Liu J; Liu B; Shi J
    Exp Biol Med (Maywood); 2021 Feb; 246(4):436-446. PubMed ID: 33175612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Methylation Clocks in Aging: Categories, Causes, and Consequences.
    Field AE; Robertson NA; Wang T; Havas A; Ideker T; Adams PD
    Mol Cell; 2018 Sep; 71(6):882-895. PubMed ID: 30241605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Many chronological aging clocks can be found throughout the epigenome: Implications for quantifying biological aging.
    Porter HL; Brown CA; Roopnarinesingh X; Giles CB; Georgescu C; Freeman WM; Wren JD
    Aging Cell; 2021 Nov; 20(11):e13492. PubMed ID: 34655509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysfunctional epigenetic aging of the normal colon and colorectal cancer risk.
    Wang T; Maden SK; Luebeck GE; Li CI; Newcomb PA; Ulrich CM; Joo JE; Buchanan DD; Milne RL; Southey MC; Carter KT; Willbanks AR; Luo Y; Yu M; Grady WM
    Clin Epigenetics; 2020 Jan; 12(1):5. PubMed ID: 31900199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1.
    Martin-Herranz DE; Aref-Eshghi E; Bonder MJ; Stubbs TM; Choufani S; Weksberg R; Stegle O; Sadikovic B; Reik W; Thornton JM
    Genome Biol; 2019 Aug; 20(1):146. PubMed ID: 31409373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA methylation clocks for dogs and humans.
    Horvath S; Lu AT; Haghani A; Zoller JA; Li CZ; Lim AR; Brooke RT; Raj K; Serres-Armero A; Dreger DL; Hogan AN; Plassais J; Ostrander EA
    Proc Natl Acad Sci U S A; 2022 May; 119(21):e2120887119. PubMed ID: 35580182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NEOage clocks - epigenetic clocks to estimate post-menstrual and postnatal age in preterm infants.
    Graw S; Camerota M; Carter BS; Helderman J; Hofheimer JA; McGowan EC; Neal CR; Pastyrnak SL; Smith LM; DellaGrotta SA; Dansereau LM; Padbury JF; O'Shea M; Lester BM; Marsit CJ; Everson TM
    Aging (Albany NY); 2021 Oct; 13(20):23527-23544. PubMed ID: 34655469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Statistical Framework to Identify Deviation from Time Linearity in Epigenetic Aging.
    Snir S; vonHoldt BM; Pellegrini M
    PLoS Comput Biol; 2016 Nov; 12(11):e1005183. PubMed ID: 27835646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation aging clocks: challenges and recommendations.
    Bell CG; Lowe R; Adams PD; Baccarelli AA; Beck S; Bell JT; Christensen BC; Gladyshev VN; Heijmans BT; Horvath S; Ideker T; Issa JJ; Kelsey KT; Marioni RE; Reik W; Relton CL; Schalkwyk LC; Teschendorff AE; Wagner W; Zhang K; Rakyan VK
    Genome Biol; 2019 Nov; 20(1):249. PubMed ID: 31767039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic clock: A promising biomarker and practical tool in aging.
    Duan R; Fu Q; Sun Y; Li Q
    Ageing Res Rev; 2022 Nov; 81():101743. PubMed ID: 36206857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An older subjective age is related to accelerated epigenetic aging.
    Stephan Y; Sutin AR; Luchetti M; Terracciano A
    Psychol Aging; 2021 Sep; 36(6):767-772. PubMed ID: 33956464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex.
    Shireby GL; Davies JP; Francis PT; Burrage J; Walker EM; Neilson GWA; Dahir A; Thomas AJ; Love S; Smith RG; Lunnon K; Kumari M; Schalkwyk LC; Morgan K; Brookes K; Hannon E; Mill J
    Brain; 2020 Dec; 143(12):3763-3775. PubMed ID: 33300551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-tissue full lifespan epigenetic clock for mice.
    Thompson MJ; Chwiałkowska K; Rubbi L; Lusis AJ; Davis RC; Srivastava A; Korstanje R; Churchill GA; Horvath S; Pellegrini M
    Aging (Albany NY); 2018 Oct; 10(10):2832-2854. PubMed ID: 30348905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic aging clocks in mice and men.
    Wagner W
    Genome Biol; 2017 Jun; 18(1):107. PubMed ID: 28615041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Epigenetic Clocks for Key Ruminant Species.
    Caulton A; Dodds KG; McRae KM; Couldrey C; Horvath S; Clarke SM
    Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influences of DNA methylation and epigenetic clocks, on metabolic disease, in middle-aged Koreans.
    Lee HS; Park T
    Clin Epigenetics; 2020 Oct; 12(1):148. PubMed ID: 33059731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions.
    Petkovich DA; Podolskiy DI; Lobanov AV; Lee SG; Miller RA; Gladyshev VN
    Cell Metab; 2017 Apr; 25(4):954-960.e6. PubMed ID: 28380383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BiT age: A transcriptome-based aging clock near the theoretical limit of accuracy.
    Meyer DH; Schumacher B
    Aging Cell; 2021 Mar; 20(3):e13320. PubMed ID: 33656257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The epigenetic landscape of age-related diseases: the geroscience perspective.
    Gensous N; Bacalini MG; Pirazzini C; Marasco E; Giuliani C; Ravaioli F; Mengozzi G; Bertarelli C; Palmas MG; Franceschi C; Garagnani P
    Biogerontology; 2017 Aug; 18(4):549-559. PubMed ID: 28352958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of epigenetic aging
    Matsuyama M; Søraas A; Yu S; Kim K; Stavrou EX; Caimi PF; Wald D; deLima M; Dahl JA; Horvath S; Matsuyama S
    Exp Biol Med (Maywood); 2020 Nov; 245(17):1543-1551. PubMed ID: 32762265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.