BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33175682)

  • 1. 12 Degrees of Freedom Muscle Force Driven Fibril-Reinforced Poroviscoelastic Finite Element Model of the Knee Joint.
    Esrafilian A; Stenroth L; Mononen ME; Tanska P; Van Rossom S; Lloyd DG; Jonkers I; Korhonen RK
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():123-133. PubMed ID: 33175682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMG-Assisted Muscle Force Driven Finite Element Model of the Knee Joint with Fibril-Reinforced Poroelastic Cartilages and Menisci.
    Esrafilian A; Stenroth L; Mononen ME; Tanska P; Avela J; Korhonen RK
    Sci Rep; 2020 Feb; 10(1):3026. PubMed ID: 32080233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An EMG-Assisted Muscle-Force Driven Finite Element Analysis Pipeline to Investigate Joint- and Tissue-Level Mechanical Responses in Functional Activities: Towards a Rapid Assessment Toolbox.
    Esrafilian A; Stenroth L; Mononen ME; Vartiainen P; Tanska P; Karjalainen PA; Suomalainen JS; Arokoski J; Saxby DJ; Lloyd DG; Korhonen RK
    IEEE Trans Biomed Eng; 2022 Sep; 69(9):2860-2871. PubMed ID: 35239473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of simulated knee joint mechanics to selected human and bovine fibril-reinforced poroelastic material properties.
    Jahangir S; Esrafilian A; Ebrahimi M; Stenroth L; Alkjær T; Henriksen M; Englund M; Mononen ME; Korhonen RK; Tanska P
    J Biomech; 2023 Nov; 160():111800. PubMed ID: 37797566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computationally efficient strategy to estimate muscle forces in a finite element musculoskeletal model of the lower limb.
    Navacchia A; Hume DR; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():94-102. PubMed ID: 30616983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Computationally Efficient Lower Limb Finite Element Musculoskeletal Framework Directly Driven Solely by Inertial Measurement Unit Sensors.
    Wang S; Hase K; Ota S
    J Biomech Eng; 2022 May; 144(5):. PubMed ID: 34897395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ReadySim: A computational framework for building explicit finite element musculoskeletal simulations directly from motion laboratory data.
    Hume DR; Rullkoetter PJ; Shelburne KB
    Int J Numer Method Biomed Eng; 2020 Nov; 36(11):e3396. PubMed ID: 32812382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling.
    Hume DR; Navacchia A; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():153-160. PubMed ID: 30630624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity.
    Sartori M; Reggiani M; Farina D; Lloyd DG
    PLoS One; 2012; 7(12):e52618. PubMed ID: 23300725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel knee joint model in FEBio with inhomogeneous fibril-reinforced biphasic cartilage simulating tissue mechanical responses during gait: data from the osteoarthritis initiative.
    Paz A; Orozco GA; Tanska P; García JJ; Korhonen RK; Mononen ME
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(11):1353-1367. PubMed ID: 36062938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage.
    Mononen ME; Jurvelin JS; Korhonen RK
    Comput Methods Biomech Biomed Engin; 2015; 18(2):141-52. PubMed ID: 23570549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of material models for anterior cruciate ligament in tension: from poroelastic to a novel fibril-reinforced nonlinear composite model.
    Ristaniemi A; Tanska P; Stenroth L; Finnilä MAJ; Korhonen RK
    J Biomech; 2021 Jan; 114():110141. PubMed ID: 33302181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Musculoskeletal multibody dynamics simulation of the contact mechanics and kinematics of a natural knee joint during a walking cycle.
    Hu J; Chen Z; Xin H; Zhang Q; Jin Z
    Proc Inst Mech Eng H; 2018 May; 232(5):508-519. PubMed ID: 29637803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.
    Hast MW; Piazza SJ
    J Biomech Eng; 2013 Feb; 135(2):021013. PubMed ID: 23445058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement.
    Shu L; Yamamoto K; Yao J; Saraswat P; Liu Y; Mitsuishi M; Sugita N
    J Biomech; 2018 Aug; 77():146-154. PubMed ID: 30031649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the Osteoarthritis Initiative (OAI).
    Klets O; Mononen ME; Tanska P; Nieminen MT; Korhonen RK; Saarakkala S
    J Biomech; 2016 Dec; 49(16):3891-3900. PubMed ID: 27825602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.
    Lloyd DG; Besier TF
    J Biomech; 2003 Jun; 36(6):765-76. PubMed ID: 12742444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyography-Driven Forward Dynamics Simulation to Estimate In Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gaits.
    Razu SS; Guess TM
    J Biomech Eng; 2018 Jul; 140(7):0710121-8. PubMed ID: 29164228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiscale framework for evaluating three-dimensional cell mechanics in fibril-reinforced poroelastic tissues with anatomical cell distribution - Analysis of chondrocyte deformation behavior in mechanically loaded articular cartilage.
    Tanska P; Venäläinen MS; Erdemir A; Korhonen RK
    J Biomech; 2020 Mar; 101():109648. PubMed ID: 32019679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.