These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hybrid liquid-membrane lenses made by one fixed and one or two active optical components. Mikš A; Pokorný P J Opt Soc Am A Opt Image Sci Vis; 2021 Jan; 38(1):99-107. PubMed ID: 33362157 [TBL] [Abstract][Full Text] [Related]
3. Stigmatic optical system with corrected third-order spherical aberration for an arbitrary position of the object. Mikš A; Novák P J Opt Soc Am A Opt Image Sci Vis; 2022 Oct; 39(10):1849-1856. PubMed ID: 36215557 [TBL] [Abstract][Full Text] [Related]
4. Third-order aberration coefficients of a thick lens with a given value of its focal length. Mikš A; Novák J Appl Opt; 2018 May; 57(15):4263-4266. PubMed ID: 29791404 [TBL] [Abstract][Full Text] [Related]
5. Calculation of a lens system with one or two aspherical surfaces having corrected spherical aberration. Mikš A; Pokorný P J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):1390-1397. PubMed ID: 32902421 [TBL] [Abstract][Full Text] [Related]
6. [A review of mathematical descriptors of corneal asphericity]. Gatinel D; Haouat M; Hoang-Xuan T J Fr Ophtalmol; 2002 Jan; 25(1):81-90. PubMed ID: 11965125 [TBL] [Abstract][Full Text] [Related]
7. Dependence of the imaging properties of the liquid lens with variable focal length on membrane thickness. Mikš A; Šmejkal F Appl Opt; 2018 Aug; 57(22):6439-6445. PubMed ID: 30117875 [TBL] [Abstract][Full Text] [Related]
8. Algebraic and numerical analysis of imaging properties of thin tunable-focus fluidic membrane lenses with parabolic surfaces. Miks A; Novak J; Novak P Appl Opt; 2013 Apr; 52(10):2136-44. PubMed ID: 23545969 [TBL] [Abstract][Full Text] [Related]
13. Aberration design of zoom lens systems using thick lens modules. Zhang J; Chen X; Xi J; Wu Z Appl Opt; 2014 Dec; 53(36):8424-35. PubMed ID: 25608190 [TBL] [Abstract][Full Text] [Related]
14. Chromatic aberration of plane-symmetric optical systems. Cao Y; Lu L; Deng Z Appl Opt; 2019 Jan; 58(2):227-233. PubMed ID: 30645298 [TBL] [Abstract][Full Text] [Related]
15. Composite modified Luneburg model of human eye lens. Gómez-Correa JE; Balderas-Mata SE; Pierscionek BK; Chávez-Cerda S Opt Lett; 2015 Sep; 40(17):3990-3. PubMed ID: 26368694 [TBL] [Abstract][Full Text] [Related]
16. Aberration-free aspherical in-plane tunable liquid lenses by regulating local curvatures. Chen Q; Tong X; Zhu Y; Tsoi CC; Jia Y; Li Z; Zhang X Lab Chip; 2020 Mar; 20(5):995-1001. PubMed ID: 32025666 [TBL] [Abstract][Full Text] [Related]
17. Study of the influence of the slope interfaces upon the image quality of liquid optical lens. Yu D; Ying Z; Liping F; Jun L; Shufen C; Jiabin C; Jianguo X Opt Express; 2012 Oct; 20(22):24636-41. PubMed ID: 23187226 [TBL] [Abstract][Full Text] [Related]
18. Method of zoom lens design. Miks A; Novák J; Novák P Appl Opt; 2008 Nov; 47(32):6088-98. PubMed ID: 19002234 [TBL] [Abstract][Full Text] [Related]
19. Calculation of the radii of curvature of the crystalline lens surfaces. Garner LF Ophthalmic Physiol Opt; 1997 Jan; 17(1):75-80. PubMed ID: 9135816 [TBL] [Abstract][Full Text] [Related]
20. [Correlation between axial length and corneal curvature and spherical aberration]. Wang XJ; Bao YZ Zhonghua Yan Ke Za Zhi; 2017 Apr; 53(4):255-259. PubMed ID: 28412797 [No Abstract] [Full Text] [Related] [Next] [New Search]