These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Calculation of nonlinearly deformed membrane shape of liquid lens caused by uniform pressure. Pokorný P; Šmejkal F; Kulmon P; Novák P; Novák J; Mikš A; Horák M; Jirásek M Appl Opt; 2017 Jul; 56(21):5939-5947. PubMed ID: 29047915 [TBL] [Abstract][Full Text] [Related]
24. Wave front equation, caustics, and wave aberration function of simple lenses and mirrors. Kassim AM; Shealy DL Appl Opt; 1988 Feb; 27(3):516-22. PubMed ID: 20523633 [TBL] [Abstract][Full Text] [Related]
25. Sixth-order wave aberration theory of ultrawide-angle optical systems. Lu L; Cao Y Appl Opt; 2017 Oct; 56(30):8570-8583. PubMed ID: 29091641 [TBL] [Abstract][Full Text] [Related]
26. Calculation parameters of an objective consisting of three simple lenses. Mikš A; Šmejkal M J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):350-355. PubMed ID: 33690464 [TBL] [Abstract][Full Text] [Related]
27. Replacing a thin lens by a thick lens. Mikš A; Novák P Appl Opt; 2020 Jul; 59(21):6327-6332. PubMed ID: 32749296 [TBL] [Abstract][Full Text] [Related]
28. The optical modelling of the human lens. Smith G; Pierscionek BK; Atchison DA Ophthalmic Physiol Opt; 1991 Oct; 11(4):359-69. PubMed ID: 1771073 [TBL] [Abstract][Full Text] [Related]
29. Changes in spherical aberration after lens refilling with a silicone oil. Wong KH; Koopmans SA; Terwee T; Kooijman AC Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171 [TBL] [Abstract][Full Text] [Related]
32. Electrostatic mirror objective with eliminated spherical and axial chromatic aberrations. Bimurzaev SB; Serikbaeva GS; Yakushev EM J Electron Microsc (Tokyo); 2003; 52(4):365-8. PubMed ID: 14599097 [TBL] [Abstract][Full Text] [Related]
33. Improved solution for the cemented doublet. Szulc A Appl Opt; 1996 Jul; 35(19):3548-58. PubMed ID: 21102747 [TBL] [Abstract][Full Text] [Related]
34. Volumetric rendering and metrology of spherical gradient refractive index lens imaged by angular scan optical coherence tomography system. Yao J; Thompson KP; Ma B; Ponting M; Rolland JP Opt Express; 2016 Aug; 24(17):19388-404. PubMed ID: 27557217 [TBL] [Abstract][Full Text] [Related]
35. Surface profiling of an aspherical liquid lens with a varied thickness membrane. Ding Z; Wang C; Hu Z; Cao Z; Zhou Z; Chen X; Chen H; Qiao W Opt Express; 2017 Feb; 25(4):3122-3132. PubMed ID: 28241528 [TBL] [Abstract][Full Text] [Related]
36. Third-order spherical aberration correction using multistage self-aligned quadrupole correction-lens systems. Tamura K; Okayama S; Shimizu R J Electron Microsc (Tokyo); 2010; 59(3):197-206. PubMed ID: 20086186 [TBL] [Abstract][Full Text] [Related]
37. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher. Maceo Heilman B; Manns F; de Castro A; Durkee H; Arrieta E; Marcos S; Parel JM Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1743-50. PubMed ID: 25670492 [TBL] [Abstract][Full Text] [Related]
38. [Intraocular lens power calculation for high myopic eyes with cataract: comparison of three formulas]. Zhu XJ; He WW; Du Y; Qian DJ; Dai JH; Lu Y Zhonghua Yan Ke Za Zhi; 2017 Apr; 53(4):260-265. PubMed ID: 28412798 [No Abstract] [Full Text] [Related]
39. Intraocular lens power calculation after myopic refractive surgery: theoretical comparison of different methods. Savini G; Barboni P; Zanini M Ophthalmology; 2006 Aug; 113(8):1271-82. PubMed ID: 16769117 [TBL] [Abstract][Full Text] [Related]
40. Differential algebraic method for aberration analysis of typical electrostatic lenses. Liu Z Ultramicroscopy; 2006 Feb; 106(3):220-32. PubMed ID: 16125845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]