These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 33175768)

  • 1. Breadth-first piston diagnosing approach for segmented mirrors through supervised learning of multiple-wavelength images.
    Hui M; Li W; Wu Y; Liu M; Dong L; Kong L; Zhao Y
    Appl Opt; 2020 Nov; 59(32):9963-9970. PubMed ID: 33175768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Object-independent piston diagnosing approach for segmented optical mirrors via deep convolutional neural network.
    Hui M; Li W; Liu M; Dong L; Kong L; Zhao Y
    Appl Opt; 2020 Jan; 59(3):771-778. PubMed ID: 32225208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks.
    Li D; Xu S; Wang D; Yan D
    Opt Lett; 2019 Mar; 44(5):1170-1173. PubMed ID: 30821740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piston alignment of segmented optical mirrors via convolutional neural networks.
    Guerra-Ramos D; Díaz-García L; Trujillo-Sevilla J; Rodríguez-Ramos JM
    Opt Lett; 2018 Sep; 43(17):4264-4267. PubMed ID: 30160767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning wavefront sensing for fine phasing of segmented mirrors.
    Wang Y; Jiang F; Ju G; Xu B; An Q; Zhang C; Wang S; Xu S
    Opt Express; 2021 Aug; 29(16):25960-25978. PubMed ID: 34614912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-phase state detection for segmented mirrors by dual-wavelength optical vortex phase-shifting interferometry.
    Yang L; Yang D; Yang Z; Liu Z
    Opt Express; 2022 Apr; 30(9):14088-14102. PubMed ID: 35473160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fizeau interferometric cophasing of segmented mirrors: experimental validation.
    Cheetham A; Cvetojevic N; Norris B; Sivaramakrishnan A; Tuthill P
    Opt Express; 2014 Jun; 22(11):12924-34. PubMed ID: 24921490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase discontinuity sensing: a method for phasing segmented mirrors in the infrared.
    Chanan G; Troy M; Sirko E
    Appl Opt; 1999 Feb; 38(4):704-13. PubMed ID: 18305667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phasing segmented mirrors: a modification of the Keck narrow-band technique and its application to extremely large telescopes.
    Schumacher A; Devaney N; Montoya L
    Appl Opt; 2002 Mar; 41(7):1297-307. PubMed ID: 11900007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-phasing experiment of a segmented mirror using a combined broadband and two-wavelength algorithm.
    Li B; Yu WH; Chen M; Tang JL; Xian H
    Appl Opt; 2017 Nov; 56(32):8871-8879. PubMed ID: 29131170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piston Error Measurement for Segmented Telescopes with an Artificial Neural Network.
    Yue D; He Y; Li Y
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34066193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-sky performance of the Zernike phase contrast sensor for the phasing of segmented telescopes.
    Surdej I; Yaitskova N; Gonte F
    Appl Opt; 2010 Jul; 49(21):4052-62. PubMed ID: 20648188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-wavelength coarse phasing in segmented telescopes.
    Simar JF; Stockman Y; Surdej J
    Appl Opt; 2015 Feb; 54(5):1118-23. PubMed ID: 25968030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piston sensing of sparse aperture systems with a single broadband image via deep learning.
    Ma X; Xie Z; Ma H; Xu Y; Ren G; Liu Y
    Opt Express; 2019 May; 27(11):16058-16070. PubMed ID: 31163792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks.
    Nyflot MJ; Thammasorn P; Wootton LS; Ford EC; Chaovalitwongse WA
    Med Phys; 2019 Feb; 46(2):456-464. PubMed ID: 30548601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piston and tilt interferometry for segmented wavefront sensing.
    Deprez M; Bellanger C; Lombard L; Wattellier B; Primot J
    Opt Lett; 2016 Mar; 41(6):1078-81. PubMed ID: 26977638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piston sensing for a segmented mirror system via a digital dispersed fringe generated by wavelength tuning.
    Zhang Y; Xian H
    Opt Lett; 2020 Mar; 45(5):1051-1054. PubMed ID: 32108767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of an interferometric system for the measurement of phasing errors in segmented mirrors.
    Pizarro C; Arasa J; Laguarta F; Tomàs N; Pintó A
    Appl Opt; 2002 Aug; 41(22):4562-70. PubMed ID: 12153087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.