These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 33177067)

  • 1. Normal Tone-In-Noise Sensitivity in Trained Budgerigars despite Substantial Auditory-Nerve Injury: No Evidence of Hidden Hearing Loss.
    Henry KS; Abrams KS
    J Neurosci; 2021 Jan; 41(1):118-129. PubMed ID: 33177067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of selective auditory-nerve damage on the behavioral audiogram and temporal integration in the budgerigar.
    Wong SJ; Abrams KS; Amburgey KN; Wang Y; Henry KS
    Hear Res; 2019 Mar; 374():24-34. PubMed ID: 30703625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal behavioral discrimination of envelope statistics in budgerigars with kainate-induced cochlear synaptopathy.
    Henry KS; Guo AA; Abrams KS
    Hear Res; 2024 Jan; 441():108927. PubMed ID: 38096707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Midbrain-Level Neural Correlates of Behavioral Tone-in-Noise Detection: Dependence on Energy and Envelope Cues.
    Wang Y; Abrams KS; Carney LH; Henry KS
    J Neurosci; 2021 Aug; 41(34):7206-7223. PubMed ID: 34266898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Kainic Acid-Induced Auditory Nerve Damage on Envelope-Following Responses in the Budgerigar (Melopsittacus undulatus).
    Wilson JL; Abrams KS; Henry KS
    J Assoc Res Otolaryngol; 2021 Feb; 22(1):33-49. PubMed ID: 33078291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histological Correlates of Auditory Nerve Injury from Kainic Acid in the Budgerigar (Melopsittacus undulatus).
    Wang Y; Abrams KS; Youngman M; Henry KS
    J Assoc Res Otolaryngol; 2023 Oct; 24(5):473-485. PubMed ID: 37798548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorineural Hearing Loss Diminishes Use of Temporal Envelope Cues: Evidence From Roving-Level Tone-in-Noise Detection.
    Leong UC; Schwarz DM; Henry KS; Carney LH
    Ear Hear; 2020; 41(4):1009-1019. PubMed ID: 31985535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing.
    Parthasarathy A; Kujawa SG
    J Neurosci; 2018 Aug; 38(32):7108-7119. PubMed ID: 29976623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal models of hidden hearing loss: Does auditory-nerve-fiber loss cause real-world listening difficulties?
    Henry KS
    Mol Cell Neurosci; 2022 Jan; 118():103692. PubMed ID: 34883241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent Auditory Nerve Damage Following Kainic Acid Excitotoxicity in the Budgerigar (Melopsittacus undulatus).
    Henry KS; Abrams KS
    J Assoc Res Otolaryngol; 2018 Aug; 19(4):435-449. PubMed ID: 29744730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus.
    Paul BT; Bruce IC; Roberts LE
    Hear Res; 2017 Feb; 344():170-182. PubMed ID: 27888040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Search for Electrophysiological Indices of Hidden Hearing Loss in Humans: Click Auditory Brainstem Response Across Sound Levels and in Background Noise.
    Suresh CH; Krishnan A
    Ear Hear; 2021; 42(1):53-67. PubMed ID: 32675590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss.
    Kujawa SG; Liberman MC
    Hear Res; 2015 Dec; 330(Pt B):191-9. PubMed ID: 25769437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying three otopathologies in humans.
    Parker MA
    Hear Res; 2020 Dec; 398():108079. PubMed ID: 33011456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects.
    Grant KJ; Mepani AM; Wu P; Hancock KE; de Gruttola V; Liberman MC; Maison SF
    J Neurophysiol; 2020 Aug; 124(2):418-431. PubMed ID: 32639924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility.
    Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H
    Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of Measures Intended to Assess Threshold-Independent Hearing Disorders.
    Kamerer AM; Kopun JG; Fultz SE; Neely ST; Rasetshwane DM
    Ear Hear; 2019; 40(6):1267-1279. PubMed ID: 30882533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired speech perception in noise with a normal audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure.
    Guest H; Munro KJ; Prendergast G; Millman RE; Plack CJ
    Hear Res; 2018 Jul; 364():142-151. PubMed ID: 29680183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Thresholds in Noise to Identify Hidden Hearing Loss in Humans.
    Ridley CL; Kopun JG; Neely ST; Gorga MP; Rasetshwane DM
    Ear Hear; 2018; 39(5):829-844. PubMed ID: 29337760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy.
    Mehraei G; Hickox AE; Bharadwaj HM; Goldberg H; Verhulst S; Liberman MC; Shinn-Cunningham BG
    J Neurosci; 2016 Mar; 36(13):3755-64. PubMed ID: 27030760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.