These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33177077)

  • 1. DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features.
    Lyu J; Li JJ; Su J; Peng F; Chen YE; Ge X; Li W
    Sci Adv; 2020 Nov; 6(46):. PubMed ID: 33177077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer.
    Slattery ML; Herrick JS; Mullany LE; Samowitz WS; Sevens JR; Sakoda L; Wolff RK
    Genes Chromosomes Cancer; 2017 Nov; 56(11):769-787. PubMed ID: 28675510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatic selection distinguishes oncogenes and tumor suppressor genes.
    Chandrashekar P; Ahmadinejad N; Wang J; Sekulic A; Egan JB; Asmann YW; Kumar S; Maley C; Liu L
    Bioinformatics; 2020 Mar; 36(6):1712-1717. PubMed ID: 32176769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct and competitive regulatory patterns of tumor suppressor genes and oncogenes in ovarian cancer.
    Zhao M; Sun J; Zhao Z
    PLoS One; 2012; 7(8):e44175. PubMed ID: 22952919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer.
    Wrzeszczynski KO; Varadan V; Byrnes J; Lum E; Kamalakaran S; Levine DA; Dimitrova N; Zhang MQ; Lucito R
    PLoS One; 2011; 6(12):e28503. PubMed ID: 22174824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives.
    Zhu K; Liu Q; Zhou Y; Tao C; Zhao Z; Sun J; Xu H
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S8. PubMed ID: 26099335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic regulation of cancer-associated genes in ovarian cancer.
    Kwon MJ; Shin YK
    Int J Mol Sci; 2011 Jan; 12(2):983-1008. PubMed ID: 21541038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes.
    Esteller M
    Br J Cancer; 2006 Jan; 94(2):179-83. PubMed ID: 16404435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetically Silenced Candidate Tumor Suppressor Genes in Prostate Cancer: Identified by Modeling Methylation Stratification and Applied to Progression Prediction.
    Zhang W; Flemington EK; Deng HW; Zhang K
    Cancer Epidemiol Biomarkers Prev; 2019 Jan; 28(1):198-207. PubMed ID: 30262601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of aberrantly methylated differentially expressed genes in breast cancer by integrated bioinformatics analysis.
    Yi L; Luo P; Zhang J
    J Cell Biochem; 2019 Sep; 120(9):16229-16243. PubMed ID: 31081184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel ratio-metric features enable the identification of new driver genes across cancer types.
    Sudhakar M; Rengaswamy R; Raman K
    Sci Rep; 2022 Jan; 12(1):5. PubMed ID: 34997044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pitfalls in experimental designs for characterizing the transcriptional, methylational and copy number changes of oncogenes and tumor suppressor genes.
    Zhang Y; Xia J; Zhang Y; Qin Y; Yang D; Qi L; Zhao W; Wang C; Guo Z
    PLoS One; 2013; 8(3):e58163. PubMed ID: 23472150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cucurbitacin B Alters the Expression of Tumor-Related Genes by Epigenetic Modifications in NSCLC and Inhibits NNK-Induced Lung Tumorigenesis.
    Shukla S; Khan S; Kumar S; Sinha S; Farhan M; Bora HK; Maurya R; Meeran SM
    Cancer Prev Res (Phila); 2015 Jun; 8(6):552-62. PubMed ID: 25813524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering Oncogenic Mechanisms of Tumor Suppressor Genes in Breast Cancer Multi-Omics Data.
    Cho SB
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial CRISPR/Cas9 Screening Reveals Epistatic Networks of Interacting Tumor Suppressor Genes and Therapeutic Targets in Human Breast Cancer.
    Zhao X; Li J; Liu Z; Powers S
    Cancer Res; 2021 Dec; 81(24):6090-6105. PubMed ID: 34561273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetics in cancer: implications for early detection and prevention.
    Verma M; Srivastava S
    Lancet Oncol; 2002 Dec; 3(12):755-63. PubMed ID: 12473517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Yin and Yang of cancer genes.
    Bashyam MD; Animireddy S; Bala P; Naz A; George SA
    Gene; 2019 Jul; 704():121-133. PubMed ID: 30980945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes.
    Sudhakar M; Rengaswamy R; Raman K
    Front Genet; 2022; 13():854190. PubMed ID: 35620468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.