BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33177188)

  • 1. siRNA potency enhancement via chemical modifications of nucleotide bases at the 5'-end of the siRNA guide strand.
    Shinohara F; Oashi T; Harumoto T; Nishikawa T; Takayama Y; Miyagi H; Takahashi Y; Nakajima T; Sawada T; Koda Y; Makino A; Sato A; Hamaguchi K; Suzuki M; Yamamoto J; Tomari Y; Saito JI
    RNA; 2021 Feb; 27(2):163-173. PubMed ID: 33177188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic analysis of the enhanced RNAi activity by 6-mCEPh-purine at the 5' end of the siRNA guide strand.
    Brechin V; Shinohara F; Saito JI; Seitz H; Tomari Y
    RNA; 2021 Feb; 27(2):151-162. PubMed ID: 33177187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Strand-Selective Interaction of SNA-Modified siRNA with AGO2-MID.
    Kamiya Y; Takeyama Y; Mizuno T; Satoh F; Asanuma H
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32717920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.
    Matranga C; Tomari Y; Shin C; Bartel DP; Zamore PD
    Cell; 2005 Nov; 123(4):607-20. PubMed ID: 16271386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation.
    Rand TA; Petersen S; Du F; Wang X
    Cell; 2005 Nov; 123(4):621-9. PubMed ID: 16271385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition potency of siRNA is specified by the 5'-half sequence of the guide strand.
    Yoo JW; Kim S; Lee DK
    Biochem Biophys Res Commun; 2008 Feb; 367(1):78-83. PubMed ID: 18164261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of RNAi Responses by Short Left-Handed Hairpin RNAi Triggers.
    Hagopian JC; Hamil AS; van den Berg A; Meade BR; Eguchi A; Palm-Apergi C; Dowdy SF
    Nucleic Acid Ther; 2017 Oct; 27(5):260-271. PubMed ID: 28933656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terminal Duplex Stability and Nucleotide Identity Differentially Control siRNA Loading and Activity in RNA Interference.
    Angart PA; Carlson RJ; Adu-Berchie K; Walton SP
    Nucleic Acid Ther; 2016 Oct; 26(5):309-317. PubMed ID: 27399870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative Quantification of siRNA Strand Loading into Ago2 for Design of Highly Active siRNAs.
    Angart PA; Adu-Berchie K; Carlson RJ; Vocelle DB; Chan C; Walton SP
    Methods Mol Biol; 2019; 1974():41-56. PubMed ID: 31098994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme.
    Li F; Pallan PS; Maier MA; Rajeev KG; Mathieu SL; Kreutz C; Fan Y; Sanghvi J; Micura R; Rozners E; Manoharan M; Egli M
    Nucleic Acids Res; 2007; 35(19):6424-38. PubMed ID: 17881374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Analysis of Human Argonaute-2 Bound to a Modified siRNA Guide.
    Schirle NT; Kinberger GA; Murray HF; Lima WF; Prakash TP; MacRae IJ
    J Am Chem Soc; 2016 Jul; 138(28):8694-7. PubMed ID: 27380263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the Binding Interactions between Chemically Modified siRNAs and Human Argonaute 2 Using Microsecond Molecular Dynamics Simulations.
    Harikrishna S; Pradeepkumar PI
    J Chem Inf Model; 2017 Apr; 57(4):883-896. PubMed ID: 28287733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Chemical Modifications on siRNA Strand Selection in Mammalian Cells.
    Varley AJ; Hammill ML; Salim L; Desaulniers JP
    Nucleic Acid Ther; 2020 Aug; 30(4):229-236. PubMed ID: 32175808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structurally modulated codelivery of siRNA and Argonaute 2 for enhanced RNA interference.
    Li J; Wu C; Wang W; He Y; Elkayam E; Joshua-Tor L; Hammond PT
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2696-E2705. PubMed ID: 29432194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single modification at position 14 of siRNA strand abolishes its gene-silencing activity by decreasing both RISC loading and target degradation.
    Zheng J; Zhang L; Zhang J; Wang X; Ye K; Xi Z; Du Q; Liang Z
    FASEB J; 2013 Oct; 27(10):4017-26. PubMed ID: 23771927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short interfering RNA guide strand modifiers from computational screening.
    Onizuka K; Harrison JG; Ball-Jones AA; Ibarra-Soza JM; Zheng Y; Ly D; Lam W; Mac S; Tantillo DJ; Beal PA
    J Am Chem Soc; 2013 Nov; 135(45):17069-77. PubMed ID: 24152142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 5' binding MID domain of human Argonaute2 tolerates chemically modified nucleotide analogues.
    Deleavey GF; Frank F; Hassler M; Wisnovsky S; Nagar B; Damha MJ
    Nucleic Acid Ther; 2013 Feb; 23(1):81-7. PubMed ID: 23289589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the Dicer-2-R2D2 heterodimer bound to a small RNA duplex.
    Yamaguchi S; Naganuma M; Nishizawa T; Kusakizako T; Tomari Y; Nishimasu H; Nureki O
    Nature; 2022 Jul; 607(7918):393-398. PubMed ID: 35768503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.
    Rawlings RA; Krishnan V; Walter NG
    J Mol Biol; 2011 Apr; 408(2):262-76. PubMed ID: 21354178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.