BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33177215)

  • 1. Genome-Wide CRISPR-Cas9 Screen Reveals the Importance of the Heparan Sulfate Pathway and the Conserved Oligomeric Golgi Complex for Synthetic Double-Stranded RNA Uptake and Sindbis Virus Infection.
    Petitjean O; Girardi E; Ngondo RP; Lupashin V; Pfeffer S
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33177215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-Stranded RNA Is Detected by Immunofluorescence Analysis in RNA and DNA Virus Infections, Including Those by Negative-Stranded RNA Viruses.
    Son KN; Liang Z; Lipton HL
    J Virol; 2015 Sep; 89(18):9383-92. PubMed ID: 26136565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing Roles of Double-Stranded RNA Effector Pathways and Viral Defense Proteins Revealed with CRISPR-Cas9 Knockout Cell Lines and Vaccinia Virus Mutants.
    Liu R; Moss B
    J Virol; 2016 Sep; 90(17):7864-79. PubMed ID: 27334583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection.
    Luteijn RD; van Diemen F; Blomen VA; Boer IGJ; Manikam Sadasivam S; van Kuppevelt TH; Drexler I; Brummelkamp TR; Lebbink RJ; Wiertz EJ
    J Virol; 2019 Jul; 93(13):. PubMed ID: 30996093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics-based determination of double-stranded RNA interactome reveals known and new factors involved in Sindbis virus infection.
    Girardi E; Messmer M; Lopez P; Fender A; Chicher J; Chane-Woon-Ming B; Hammann P; Pfeffer S
    RNA; 2023 Mar; 29(3):361-375. PubMed ID: 36617674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Genome-Wide CRISPR-Cas9 Screen Reveals the Requirement of Host Cell Sulfation for Schmallenberg Virus Infection.
    Thamamongood T; Aebischer A; Wagner V; Chang MW; Elling R; Benner C; GarcĂ­a-Sastre A; Kochs G; Beer M; Schwemmle M
    J Virol; 2020 Aug; 94(17):. PubMed ID: 32522852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses.
    Weber F; Wagner V; Rasmussen SB; Hartmann R; Paludan SR
    J Virol; 2006 May; 80(10):5059-64. PubMed ID: 16641297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Candidate Host Cell Entry Factors for Bovine Herpes Virus Type-1 Based on a Genome-Wide CRISPR Knockout Screen.
    Tan WS; Rong E; Dry I; Lillico S; Law A; Digard P; Whitelaw B; Dalziel RG
    Viruses; 2024 Feb; 16(2):. PubMed ID: 38400072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viral infection and host defense.
    Carter WA; De Clercq E
    Science; 1974 Dec; 186(4170):1172-8. PubMed ID: 4610750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytovirome Analysis of Wild Plant Populations: Comparison of Double-Stranded RNA and Virion-Associated Nucleic Acid Metagenomic Approaches.
    Ma Y; Marais A; Lefebvre M; Theil S; Svanella-Dumas L; Faure C; Candresse T
    J Virol; 2019 Dec; 94(1):. PubMed ID: 31597769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases.
    Delgui LR; Colombo MI
    Front Cell Infect Microbiol; 2017; 7():5. PubMed ID: 28164038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SLC35B2 Acts in a Dual Role in the Host Sulfation Required for EV71 Infection.
    Guo D; Yu X; Wang D; Li Z; Zhou Y; Xu G; Yuan B; Qin Y; Chen M
    J Virol; 2022 May; 96(9):e0204221. PubMed ID: 35420441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of genome transcription in segmented dsRNA viruses.
    Lawton JA; Estes MK; Prasad BV
    Adv Virus Res; 2000; 55():185-229. PubMed ID: 11050943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accessory to the 'Trinity': SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses.
    DeWitte-Orr SJ; Collins SE; Bauer CM; Bowdish DM; Mossman KL
    PLoS Pathog; 2010 Mar; 6(3):e1000829. PubMed ID: 20360967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the Role of Stress Granules in Innate Immune Suppression by the Herpes Simplex Virus 1 Endoribonuclease VHS.
    Burgess HM; Mohr I
    J Virol; 2018 Aug; 92(15):. PubMed ID: 29793959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confocal Imaging of Double-Stranded RNA and Pattern Recognition Receptors in Negative-Sense RNA Virus Infection.
    Mateer E; Paessler S; Huang C
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30741258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viral double-stranded RNA sensors induce antiviral, pro-inflammatory, and pro-apoptotic responses in human renal tubular epithelial cells.
    Heutinck KM; Rowshani AT; Kassies J; Claessen N; van Donselaar-van der Pant KA; Bemelman FJ; Eldering E; van Lier RA; Florquin S; Ten Berge IJ; Hamann J
    Kidney Int; 2012 Sep; 82(6):664-75. PubMed ID: 22648297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of Noxa in cellular apoptotic responses to interferon, double-stranded RNA, and virus infection.
    Sun Y; Leaman DW
    J Biol Chem; 2005 Apr; 280(16):15561-8. PubMed ID: 15705586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of RNase L in Egyptian Rousette Bat-Derived RoNi/7 Cells Is Dependent Primarily on OAS3 and Independent of MAVS Signaling.
    Li Y; Dong B; Wei Z; Silverman RH; Weiss SR
    mBio; 2019 Nov; 10(6):. PubMed ID: 31719180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of heparan sulfate in the Zika virus entry, replication, and cell death.
    Gao H; Lin Y; He J; Zhou S; Liang M; Huang C; Li X; Liu C; Zhang P
    Virology; 2019 Mar; 529():91-100. PubMed ID: 30684694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.