These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 33177281)

  • 1. Fundamental Differences in Emulsification Principle between Three-phase Emulsification and Conventional Methods.
    Miyasaka K; Imai Y; Tajima K
    J Oleo Sci; 2020 Dec; 69(12):1551-1560. PubMed ID: 33177281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emulsions stabilized by highly hydrophilic TiO
    Wang J; Sun Y; Yu M; Lu X; Komarneni S; Yang C
    J Colloid Interface Sci; 2021 May; 589():378-387. PubMed ID: 33482535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation.
    Bouchemal K; Briançon S; Perrier E; Fessi H
    Int J Pharm; 2004 Aug; 280(1-2):241-51. PubMed ID: 15265563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.
    Worthen AJ; Foster LM; Dong J; Bollinger JA; Peterman AH; Pastora LE; Bryant SL; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Feb; 30(4):984-94. PubMed ID: 24409832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-step emulsification process for water-in-oil-in-water multiple emulsions stabilized by lamellar liquid crystals.
    Ito T; Tsuji Y; Aramaki K; Tonooka N
    J Oleo Sci; 2012; 61(8):413-20. PubMed ID: 22864511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stability of three different citrus oil-in-water emulsions fabricated by spontaneous emulsification.
    Zhao S; Tian G; Zhao C; Li C; Bao Y; DiMarco-Crook C; Tang Z; Li C; Julian McClements D; Xiao H; Zheng J
    Food Chem; 2018 Dec; 269():577-587. PubMed ID: 30100475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Surface-Active Chaperonin Nanobarrels for Oil-in-Water Pickering Emulsions and Delivery of Lipophilic Compounds.
    Xu B; Liu C; Sun H; Wang X; Huang F
    J Agric Food Chem; 2019 Sep; 67(36):10155-10164. PubMed ID: 31433944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Van der Waals Emulsions: Emulsions Stabilized by Surface-Inactive, Hydrophilic Particles via van der Waals Attraction.
    Marina PF; Cheng C; Sedev R; Stocco A; Binks BP; Wang D
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9510-9514. PubMed ID: 29808514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of equilibrium Pickering emulsions--a matter of time scales.
    Kraft DJ; Luigjes B; de Folter JW; Philipse AP; Kegel WK
    J Phys Chem B; 2010 Sep; 114(38):12257-63. PubMed ID: 20809591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability and Oil Migration of Oil-in-Water Emulsions Emulsified by Phase-Separating Biopolymer Mixtures.
    Yang N; Mao P; Lv R; Zhang K; Fang Y; Nishinari K; Phillips GO
    J Food Sci; 2016 Aug; 81(8):E1971-80. PubMed ID: 27384744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions.
    Duffus LJ; Norton JE; Smith P; Norton IT; Spyropoulos F
    J Colloid Interface Sci; 2016 Jul; 473():9-21. PubMed ID: 27042820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O/W nano-emulsion formation using an isothermal low-energy emulsification method in a mixture of polyglycerol polyricinoleate and hexaglycerol monolaurate with glycerol system.
    Wakisaka S; Nishimura T; Gohtani S
    J Oleo Sci; 2015; 64(4):405-13. PubMed ID: 25766932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Phenolic Network Covering on Zein Nanoparticles as a Regulator on the Oil/Water Interface.
    Wu D; Dai Y; Huang Y; Gao J; Liang H; Eid M; Deng Q; Zhou B
    J Agric Food Chem; 2020 Aug; 68(31):8471-8482. PubMed ID: 32663391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication, characterisation and stability of oil-in-water emulsions stabilised by solid lipid particles: the role of particle characteristics and emulsion microstructure upon Pickering functionality.
    Zafeiri I; Smith P; Norton IT; Spyropoulos F
    Food Funct; 2017 Jul; 8(7):2583-2591. PubMed ID: 28682410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inspired by Stenocara Beetles: From Water Collection to High-Efficiency Water-in-Oil Emulsion Separation.
    Zeng X; Qian L; Yuan X; Zhou C; Li Z; Cheng J; Xu S; Wang S; Pi P; Wen X
    ACS Nano; 2017 Jan; 11(1):760-769. PubMed ID: 27936586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Novel Spontaneous Emulsification Method for Peptide Delivery Using Porous Silica Particles.
    Toorisaka E; Nonaka Y
    J Oleo Sci; 2018 Mar; 67(3):303-306. PubMed ID: 29459516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing organoclay stabilized Pickering emulsions.
    Cui Y; Threlfall M; van Duijneveldt JS
    J Colloid Interface Sci; 2011 Apr; 356(2):665-71. PubMed ID: 21324469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of oil-in-water emulsions prepared from solid-state emulsions: effect of matrix and oil phase.
    Shively ML
    Pharm Res; 1993 Aug; 10(8):1153-6. PubMed ID: 8415400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation of Pickering emulsions for the development of surfactant-free sunscreen creams.
    Bordes C; Bolzinger MA; El Achak M; Pirot F; Arquier D; Agusti G; Chevalier Y
    Int J Cosmet Sci; 2021 Aug; 43(4):432-445. PubMed ID: 33964042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Analysis of the Stability of Oil-In-Water Pickering Emulsion by Electrochemical Impedance Spectroscopy.
    Jiang Q; Sun N; Kumar P; Li Q; Liu B; Li A; Wang W; Gao Z
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32599776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.