These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 33177314)
1. A Sensitive, Simple and Direct Determination of Pantoprazole Based on a "Turn off-on" Fluorescence Nanosensor by Using Terbium-1,10-phenanthroline-silver Nanoparticles. Shaghaghi M; Rashtbari S; Abdollahi A; Dehghan G; Jouyban A Anal Sci; 2020; 36(11):1345-1349. PubMed ID: 33177314 [TBL] [Abstract][Full Text] [Related]
2. A novel ultrasensitive and non-enzymatic "turn-on-off" fluorescence nanosensor for direct determination of glucose in the serum: As an alternative approach to the other optical and electrochemical methods. Dehghan G; Shaghaghi M; Alizadeh P Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 214():459-468. PubMed ID: 30807944 [TBL] [Abstract][Full Text] [Related]
3. A rapid, simple and ultrasensitive spectrofluorimetric method for the direct detection of metformin in real samples based on a nanoquenching approach. Azarian S; Shaghaghi M; Dehghan G; Sheibani N Luminescence; 2021 May; 36(3):658-667. PubMed ID: 33185014 [TBL] [Abstract][Full Text] [Related]
4. A validated spectrofluorimetric method for the determination of citalopram in bulk and pharmaceutical preparations based on the measurement of the silver nanoparticles-enhanced fluorescence of citalopram/terbium complexes. Khan MN; Shah J; Jan MR; Lee SH J Fluoresc; 2013 Jan; 23(1):161-9. PubMed ID: 23014772 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Tb(III) fluorescence on gelatin-coated silver nanoparticles in dopamine detection. Sun J; Feng A; Wu X; Che X; Zhou W Talanta; 2021 Aug; 231():122334. PubMed ID: 33965015 [TBL] [Abstract][Full Text] [Related]
6. Determination of fluoxetine in pharmaceutical and biological samples based on the silver nanoparticle enhanced fluorescence of fluoxetine-terbium complex. Lotfi A; Manzoori JL Luminescence; 2016 Nov; 31(7):1349-1357. PubMed ID: 26935350 [TBL] [Abstract][Full Text] [Related]
7. Silver nanoparticles-enhanced rare earth co-luminescence effect of Tb(III)-Y(III)-dopamine system. Li H; Wu X Talanta; 2015 Jun; 138():203-208. PubMed ID: 25863392 [TBL] [Abstract][Full Text] [Related]
8. Ag Nanoparticles-enhanced Fluorescence of Terbium-Deferasirox Complexes for the Highly Sensitive Determination of Deferasirox. Abolhasani J; Naderali R; Hassanzadeh J Anal Sci; 2016; 32(4):381-6. PubMed ID: 27063708 [TBL] [Abstract][Full Text] [Related]
9. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Qu F; Sun C; Lv X; You J Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289 [TBL] [Abstract][Full Text] [Related]
10. [Nanosilver sensitized fluorescence and second-order scattering of Tb (III)-norfloxacin and its application]. Yang ZJ; Zhao HC; Ding F; Li AY; Wang XL Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Dec; 27(12):2534-7. PubMed ID: 18330303 [TBL] [Abstract][Full Text] [Related]
11. Ultrasensitive and Rapid Determination of Folic Acid Using Ag Nanoparticles Enhanced 1, 10-Phenantroline-Terbium (III) Sensitized Fluorescence. Hassanzadeh R; Lotfi A; Bagheri N; Hassanzadeh J J Fluoresc; 2016 Sep; 26(5):1875-83. PubMed ID: 27448225 [TBL] [Abstract][Full Text] [Related]
12. Selective turn-on fluorescence assay of 6-thioguanine by using harmine-modified silver nanoparticles. Amjadi M; Farzampour L Luminescence; 2014 Sep; 29(6):689-94. PubMed ID: 24288350 [TBL] [Abstract][Full Text] [Related]
13. Spectrofluorimetric determination of folic acid in tablets and urine samples using 1,10-phenanthroline-terbium probe. Manzoori JL; Jouyban A; Amjadi M; Soleymani J Luminescence; 2011; 26(2):106-11. PubMed ID: 20094983 [TBL] [Abstract][Full Text] [Related]
14. Silver nanoprisms-based Tb(III) fluorescence sensor for highly selective detection of dopamine. Shen J; Sun C; Wu X Talanta; 2017 Apr; 165():369-376. PubMed ID: 28153269 [TBL] [Abstract][Full Text] [Related]
15. Study of silver nanoparticles sensitized fluorescence and second-order scattering of terbium(III)-pefloxacin mesylate complex and determination of pefloxacin mesylate. Li A; Song Z ScientificWorldJournal; 2014; 2014():742935. PubMed ID: 24892083 [TBL] [Abstract][Full Text] [Related]
16. Fluorimetric determination of febuxostat in dosage forms and in real human plasma via Förster resonance energy transfer. El-Gizawy SM; Atia NN; Hosny NM Luminescence; 2018 Aug; 33(5):877-884. PubMed ID: 29687589 [TBL] [Abstract][Full Text] [Related]
17. A study on silver nanoparticles-sensitized fluorescence and second-order scattering of the complexes of Tb(III) with ciprofloxacin and its applications. Zhao HC; Ding F; Wang X; Ju H; Li A; Jin LP Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):332-6. PubMed ID: 17954035 [TBL] [Abstract][Full Text] [Related]
18. Silver nanoflowers-enhanced Tb(III)/La(III) co-luminescence for the sensitive detection of dopamine. Sun C; Shen J; Cui R; Yuan F; Zhang H; Wu X Anal Bioanal Chem; 2019 Mar; 411(7):1375-1381. PubMed ID: 30645663 [TBL] [Abstract][Full Text] [Related]
19. Enhanced fluorescence of 3-(naphthalene-2-ylimino)-1-phenylbutan-1-one-Tb with 1,10-phenanthroline ternary system and its analytical application. Dang F; Liu W; Zheng J Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):714-8. PubMed ID: 17276724 [TBL] [Abstract][Full Text] [Related]
20. A new "turn-on" fluorescent sensor based on gold quantum dots and silver nanoparticles for lamotrigine detection in plasma. Jouyban A; Samadi A; Khoubnasabjafari M Talanta; 2017 Sep; 172():126-132. PubMed ID: 28602284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]