These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33177538)

  • 41. The role of mountains in shaping the global meridional overturning circulation.
    Yang H; Jiang R; Wen Q; Liu Y; Wu G; Huang J
    Nat Commun; 2024 Mar; 15(1):2602. PubMed ID: 38521775
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deglacial patterns of South Pacific overturning inferred from
    Ronge TA; Lippold J; Geibert W; Jaccard SL; Mieruch-Schnülle S; Süfke F; Tiedemann R
    Sci Rep; 2021 Oct; 11(1):20473. PubMed ID: 34650117
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of the Gulf Stream in European climate.
    Palter JB
    Ann Rev Mar Sci; 2015; 7():113-37. PubMed ID: 25560606
    [TBL] [Abstract][Full Text] [Related]  

  • 44. North Atlantic cooling triggered a zonal mode over the Indian Ocean during Heinrich Stadial 1.
    Du X; Russell JM; Liu Z; Otto-Bliesner BL; Oppo DW; Mohtadi M; Zhu C; Galy VV; Schefuß E; Yan Y; Rosenthal Y; Dubois N; Arbuszewski J; Gao Y
    Sci Adv; 2023 Jan; 9(1):eadd4909. PubMed ID: 36598985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wind-driven and buoyancy-driven circulation in the subtropical North Atlantic Ocean.
    Bryden HL
    Proc Math Phys Eng Sci; 2021 Dec; 477(2256):20210172. PubMed ID: 35153601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes.
    McManus JF; Francois R; Gherardi JM; Keigwin LD; Brown-Leger S
    Nature; 2004 Apr; 428(6985):834-7. PubMed ID: 15103371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north.
    Buizert C; Sigl M; Severi M; Markle BR; Wettstein JJ; McConnell JR; Pedro JB; Sodemann H; Goto-Azuma K; Kawamura K; Fujita S; Motoyama H; Hirabayashi M; Uemura R; Stenni B; Parrenin F; He F; Fudge TJ; Steig EJ
    Nature; 2018 Nov; 563(7733):681-685. PubMed ID: 30487614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.
    Schmidt MW; Chang P; Hertzberg JE; Them TR; Ji L; Otto-Bliesner BL
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14348-52. PubMed ID: 22908256
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Arctic freshwater impact on the Atlantic Meridional Overturning Circulation: status and prospects.
    Haine TWN; Siddiqui AH; Jiang W
    Philos Trans A Math Phys Eng Sci; 2023 Dec; 381(2262):20220185. PubMed ID: 37866388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Greenland ice mass loss during the Younger Dryas driven by Atlantic Meridional Overturning Circulation feedbacks.
    Rainsley E; Menviel L; Fogwill CJ; Turney CSM; Hughes ALC; Rood DH
    Sci Rep; 2018 Aug; 8(1):11307. PubMed ID: 30093676
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate.
    Liu W; Xie SP; Liu Z; Zhu J
    Sci Adv; 2017 Jan; 3(1):e1601666. PubMed ID: 28070560
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Southern Ocean dust-climate coupling over the past four million years.
    Martínez-Garcia A; Rosell-Melé A; Jaccard SL; Geibert W; Sigman DM; Haug GH
    Nature; 2011 Aug; 476(7360):312-5. PubMed ID: 21814203
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting the contribution of climate change on North Atlantic underwater sound propagation.
    Possenti L; Reichart GJ; de Nooijer L; Lam FP; de Jong C; Colin M; Binnerts B; Boot A; von der Heydt A
    PeerJ; 2023; 11():e16208. PubMed ID: 37842042
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anomalous upstream retroflection in the agulhas current.
    Lutjeharms JR; van Ballegooyen RC
    Science; 1988 Jun; 240(4860):1770. PubMed ID: 17842430
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model.
    Boulton CA; Allison LC; Lenton TM
    Nat Commun; 2014 Dec; 5():5752. PubMed ID: 25482065
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extrapolar climate reversal during the last deglaciation.
    Asmerom Y; Polyak VJ; Lachniet MS
    Sci Rep; 2017 Aug; 7(1):7157. PubMed ID: 28769108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Subpolar North Atlantic Ocean Heat Content Variability and its Decomposition.
    Zhang W; Yan XH
    Sci Rep; 2017 Oct; 7(1):13748. PubMed ID: 29062083
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions.
    Swingedouw D; Ortega P; Mignot J; Guilyardi E; Masson-Delmotte V; Butler PG; Khodri M; Séférian R
    Nat Commun; 2015 Mar; 6():6545. PubMed ID: 25818017
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean.
    Meckler AN; Sigman DM; Gibson KA; François R; Martínez-García A; Jaccard SL; Röhl U; Peterson LC; Tiedemann R; Haug GH
    Nature; 2013 Mar; 495(7442):495-8. PubMed ID: 23538831
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics.
    Jian Z; Wang Y; Dang H; Lea DW; Liu Z; Jin H; Yin Y
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7044-7051. PubMed ID: 32179673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.