BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33177578)

  • 1. New insights into the application of pair distribution function studies to biogenic and synthetic hydroxyapatites.
    Arnold EL; Keeble DS; Greenwood C; Rogers KD
    Sci Rep; 2020 Nov; 10(1):19597. PubMed ID: 33177578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate-substituted hydroxyapatite.
    Arnold EL; Keeble DS; Evans JPO; Greenwood C; Rogers KD
    Acta Crystallogr C Struct Chem; 2022 May; 78(Pt 5):271-279. PubMed ID: 35510432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology.
    Marković S; Veselinović L; Lukić MJ; Karanović L; Bračko I; Ignjatović N; Uskoković D
    Biomed Mater; 2011 Aug; 6(4):045005. PubMed ID: 21659698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of total X-ray scattering methods and pair distribution function analysis for study of structure of biominerals.
    Reeder RJ; Michel FM
    Methods Enzymol; 2013; 532():477-500. PubMed ID: 24188779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite.
    Gibson IR; Bonfield W
    J Biomed Mater Res; 2002 Mar; 59(4):697-708. PubMed ID: 11774332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogenic Hydroxyapatite: A New Material for the Preservation and Restoration of the Built Environment.
    Turner RJ; Renshaw JC; Hamilton A
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31401-31410. PubMed ID: 28737897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-second pair distribution function using a broad bandwidth monochromator.
    Magnard NPL; Sørensen DR; Kantor I; Jensen KMØ; Jørgensen MRV
    J Appl Crystallogr; 2023 Jun; 56(Pt 3):825-833. PubMed ID: 37284263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of carbonate substitution on physicochemical and biological properties of silver containing hydroxyapatites.
    Kolmas J; Piotrowska U; Kuras M; Kurek E
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():124-130. PubMed ID: 28254276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measures of Bone Mineral Carbonate Content and Mineral Maturity/Crystallinity for FT-IR and Raman Spectroscopic Imaging Differentially Relate to Physical-Chemical Properties of Carbonate-Substituted Hydroxyapatite.
    Taylor EA; Mileti CJ; Ganesan S; Kim JH; Donnelly E
    Calcif Tissue Int; 2021 Jul; 109(1):77-91. PubMed ID: 33710382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MLstructureMining: a machine learning tool for structure identification from X-ray pair distribution functions.
    Kjær ETS; Anker AS; Kirsch A; Lajer J; Aalling-Frederiksen O; Billinge SJL; Jensen KMØ
    Digit Discov; 2024 May; 3(5):908-918. PubMed ID: 38756225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EXAFS study of structural disorder in carbonate-containing hydroxyapatites.
    Harries JE; Hasnain SS; Shah JS
    Calcif Tissue Int; 1987 Dec; 41(6):346-50. PubMed ID: 2830003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison and evaluation of pair distribution functions, using a similarity measure based on cross-correlation functions.
    Habermehl S; Schlesinger C; Prill D
    J Appl Crystallogr; 2021 Apr; 54(Pt 2):612-623. PubMed ID: 33953658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Temperature on the Physicochemical Properties of Bioinspired, Synthetic, and Biogenic Hydroxyapatites Calcinated under the Same Thermal Conditions.
    Gomez-Vazquez OM; Bernal-Alvarez LR; Velasquez-Miranda JI; Rodriguez-Garcia ME
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, analysis, and characterization of carbonated apatites.
    Nelson DG; Featherstone JD
    Calcif Tissue Int; 1982; 34 Suppl 2():S69-81. PubMed ID: 6293677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared (NIR) Spectroscopy of Synthetic Hydroxyapatites and Human Dental Tissues.
    Kolmas J; Marek D; Kolodziejski W
    Appl Spectrosc; 2015 Aug; 69(8):902-12. PubMed ID: 26163232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. La ions in precipitated hydroxyapatites.
    Mayer I; Layani JD; Givan A; Gaft M; Blanc P
    J Inorg Biochem; 1999 Apr; 73(4):221-6. PubMed ID: 10376345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic and biological hydroxyapatites: crystal structure questions.
    Leventouri T
    Biomaterials; 2006 Jun; 27(18):3339-42. PubMed ID: 16519933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic properties of a series of synthetic hydroxyapatites.
    Sakae T; Davies JE; Frank RM; Nagai N
    J Nihon Univ Sch Dent; 1989 Jun; 31(2):458-63. PubMed ID: 2778495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced Mg, Zn, Sr, Si Multi-Substituted Hydroxyapatites for Bone Regeneration.
    Garbo C; Locs J; D'Este M; Demazeau G; Mocanu A; Roman C; Horovitz O; Tomoaia-Cotisel M
    Int J Nanomedicine; 2020; 15():1037-1058. PubMed ID: 32103955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonated hydroxyapatites precipitated in the presence of Ti.
    Layani JD; Mayer I; Cuisinier FJ
    J Inorg Biochem; 2000 Jul; 81(1-2):57-63. PubMed ID: 11001432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.