These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33177627)

  • 1. Predicting antibody affinity changes upon mutations by combining multiple predictors.
    Kurumida Y; Saito Y; Kameda T
    Sci Rep; 2020 Nov; 10(1):19533. PubMed ID: 33177627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mmCSM-AB: guiding rational antibody engineering through multiple point mutations.
    Myung Y; Pires DEV; Ascher DB
    Nucleic Acids Res; 2020 Jul; 48(W1):W125-W131. PubMed ID: 32432715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trends in therapeutic antibody affinity maturation: From in-vitro towards next-generation sequencing approaches.
    Tabasinezhad M; Talebkhan Y; Wenzel W; Rahimi H; Omidinia E; Mahboudi F
    Immunol Lett; 2019 Aug; 212():106-113. PubMed ID: 31247224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AttABseq: an attention-based deep learning prediction method for antigen-antibody binding affinity changes based on protein sequences.
    Jin R; Ye Q; Wang J; Cao Z; Jiang D; Wang T; Kang Y; Xu W; Hsieh CY; Hou T
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures.
    Pires DE; Ascher DB
    Nucleic Acids Res; 2016 Jul; 44(W1):W469-73. PubMed ID: 27216816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic exploration of [Formula: see text] cutoff ranges in machine learning models for protein mutation stability prediction.
    Olney R; Tuor A; Jagodzinski F; Hutchinson B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1840022. PubMed ID: 30419784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AB-Bind: Antibody binding mutational database for computational affinity predictions.
    Sirin S; Apgar JR; Bennett EM; Keating AE
    Protein Sci; 2016 Feb; 25(2):393-409. PubMed ID: 26473627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Solvated Interaction Energy Function for Ranking Antibody-Antigen Binding Affinities.
    Sulea T; Vivcharuk V; Corbeil CR; Deprez C; Purisima EO
    J Chem Inf Model; 2016 Jul; 56(7):1292-303. PubMed ID: 27367467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of software methods for estimating protein-protein relative binding affinities.
    Gonzalez TR; Martin KP; Barnes JE; Patel JS; Ytreberg FM
    PLoS One; 2020; 15(12):e0240573. PubMed ID: 33347442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying prostate cancer and its clinical risk in asymptomatic men using machine learning of high dimensional peripheral blood flow cytometric natural killer cell subset phenotyping data.
    Hood SP; Cosma G; Foulds GA; Johnson C; Reeder S; McArdle SE; Khan MA; Pockley AG
    Elife; 2020 Jul; 9():. PubMed ID: 32717179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Graph-Based Signatures to Guide Rational Antibody Engineering.
    Ascher DB; Kaminskas LM; Myung Y; Pires DEV
    Methods Mol Biol; 2023; 2552():375-397. PubMed ID: 36346604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective binding to protein antigens by antibodies from antibody libraries designed with enhanced protein recognition propensities.
    Jian JW; Chen HS; Chiu YK; Peng HP; Tung CP; Chen IC; Yu CM; Tsou YL; Kuo WY; Hsu HJ; Yang AS
    MAbs; 2019; 11(2):373-387. PubMed ID: 30526270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.
    Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Sequencing-guided Design of a High Affinity Dual Specificity Antibody to Target Two Angiogenic Factors in Neovascular Age-related Macular Degeneration.
    Koenig P; Lee CV; Sanowar S; Wu P; Stinson J; Harris SF; Fuh G
    J Biol Chem; 2015 Sep; 290(36):21773-86. PubMed ID: 26088137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody design using deep learning: from sequence and structure design to affinity maturation.
    Joubbi S; Micheli A; Milazzo P; Maccari G; Ciano G; Cardamone D; Medini D
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational tools help improve protein stability but with a solubility tradeoff.
    Broom A; Jacobi Z; Trainor K; Meiering EM
    J Biol Chem; 2017 Sep; 292(35):14349-14361. PubMed ID: 28710274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.