These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33177627)

  • 21. Progress toward improved understanding of antibody maturation.
    Vajda S; Porter KA; Kozakov D
    Curr Opin Struct Biol; 2021 Apr; 67():226-231. PubMed ID: 33610066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PSnpBind-ML: predicting the effect of binding site mutations on protein-ligand binding affinity.
    Ammar A; Cavill R; Evelo C; Willighagen E
    J Cheminform; 2023 Mar; 15(1):31. PubMed ID: 36864534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-accuracy protein structures by combining machine-learning with physics-based refinement.
    Heo L; Feig M
    Proteins; 2020 May; 88(5):637-642. PubMed ID: 31693199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PSO-LocBact: A Consensus Method for Optimizing Multiple Classifier Results for Predicting the Subcellular Localization of Bacterial Proteins.
    Lertampaiporn S; Nuannimnoi S; Vorapreeda T; Chokesajjawatee N; Visessanguan W; Thammarongtham C
    Biomed Res Int; 2019; 2019():5617153. PubMed ID: 31886228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting protein conformational changes for unbound and homology docking: learning from intrinsic and induced flexibility.
    Chen H; Sun Y; Shen Y
    Proteins; 2017 Mar; 85(3):544-556. PubMed ID: 27862345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of Machine Learning Approaches for Protein-protein Interactions Prediction.
    Zhang M; Su Q; Lu Y; Zhao M; Niu B
    Med Chem; 2017; 13(6):506-514. PubMed ID: 28530547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning.
    Makowski EK; Wang T; Zupancic JM; Huang J; Wu L; Schardt JS; De Groot AS; Elkins SL; Martin WD; Tessier PM
    Nat Biomed Eng; 2024 Jan; 8(1):45-56. PubMed ID: 37666923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DG-Affinity: predicting antigen-antibody affinity with language models from sequences.
    Yuan Y; Chen Q; Mao J; Li G; Pan X
    BMC Bioinformatics; 2023 Nov; 24(1):430. PubMed ID: 37957563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ASAP-SML: An antibody sequence analysis pipeline using statistical testing and machine learning.
    Li X; Van Deventer JA; Hassoun S
    PLoS Comput Biol; 2020 Apr; 16(4):e1007779. PubMed ID: 32339164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine-Learning-Based Prediction of Cell-Penetrating Peptides and Their Uptake Efficiency with Improved Accuracy.
    Manavalan B; Subramaniyam S; Shin TH; Kim MO; Lee G
    J Proteome Res; 2018 Aug; 17(8):2715-2726. PubMed ID: 29893128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decomposing Structural Response Due to Sequence Changes in Protein Domains with Machine Learning.
    Bryant P; Elofsson A
    J Mol Biol; 2020 Jul; 432(16):4435-4446. PubMed ID: 32485208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploration and Evaluation of Machine Learning-Based Models for Predicting Enzymatic Reactions.
    Watanabe N; Murata M; Ogawa T; Vavricka CJ; Kondo A; Ogino C; Araki M
    J Chem Inf Model; 2020 Mar; 60(3):1833-1843. PubMed ID: 32053362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Somatic mutation, affinity maturation and the antibody repertoire: a computer model.
    Weinand RG
    J Theor Biol; 1990 Apr; 143(3):343-82. PubMed ID: 2385109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space.
    Makowski EK; Kinnunen PC; Huang J; Wu L; Smith MD; Wang T; Desai AA; Streu CN; Zhang Y; Zupancic JM; Schardt JS; Linderman JJ; Tessier PM
    Nat Commun; 2022 Jul; 13(1):3788. PubMed ID: 35778381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting hospitalization following psychiatric crisis care using machine learning.
    Blankers M; van der Post LFM; Dekker JJM
    BMC Med Inform Decis Mak; 2020 Dec; 20(1):332. PubMed ID: 33302948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of zinc-binding sites using multiple sequence profiles and machine learning methods.
    Yan R; Wang X; Tian Y; Xu J; Xu X; Lin J
    Mol Omics; 2019 Jun; 15(3):205-215. PubMed ID: 31046040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Machine Learning-Based QSAR Model for Benzimidazole Derivatives as Corrosion Inhibitors by Incorporating Comprehensive Feature Selection.
    Liu Y; Guo Y; Wu W; Xiong Y; Sun C; Yuan L; Li M
    Interdiscip Sci; 2019 Dec; 11(4):738-747. PubMed ID: 31486019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data.
    Dias R; Kolaczkowski B
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):102. PubMed ID: 28361672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antibody Affinity Maturation by Computational Design.
    Kuroda D; Tsumoto K
    Methods Mol Biol; 2018; 1827():15-34. PubMed ID: 30196490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.