BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33177701)

  • 1. A forward selection algorithm to identify mutually exclusive alterations in cancer studies.
    Zhang Z; Yang Y; Zhou Y; Fang H; Yuan M; Sasser K; Hamadeh H; Xu XS
    J Hum Genet; 2021 May; 66(5):509-518. PubMed ID: 33177701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis.
    Pulido-Tamayo S; Weytjens B; De Maeyer D; Marchal K
    Sci Rep; 2016 Nov; 6():36257. PubMed ID: 27808240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A greedy approach for mutual exclusivity analysis in cancer study.
    Fang H; Zhang Z; Zhou Y; Jin L; Yang Y
    Biostatistics; 2022 Jul; 23(3):910-925. PubMed ID: 33634822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets.
    Lu S; Lu KN; Cheng SY; Hu B; Ma X; Nystrom N; Lu X
    PLoS Comput Biol; 2015 Aug; 11(8):e1004257. PubMed ID: 26317392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying Mutually Exclusive Gene Sets with Prognostic Value and Novel Potential Driver Genes in Patients with Glioblastoma.
    Gao Q; Cui Y; Shen Y; Li Y; Gao X; Xi Y; Wang T
    Biomed Res Int; 2019; 2019():4860367. PubMed ID: 31815141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient algorithms to discover alterations with complementary functional association in cancer.
    Sarto Basso R; Hochbaum DS; Vandin F
    PLoS Comput Biol; 2019 May; 15(5):e1006802. PubMed ID: 31120875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying mutual exclusivity across cancer genomes: computational approaches to discover genetic interaction and reveal tumor vulnerability.
    Deng Y; Luo S; Deng C; Luo T; Yin W; Zhang H; Zhang Y; Zhang X; Lan Y; Ping Y; Xiao Y; Li X
    Brief Bioinform; 2019 Jan; 20(1):254-266. PubMed ID: 28968730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer.
    Leiserson MD; Wu HT; Vandin F; Raphael BJ
    Genome Biol; 2015 Aug; 16(1):160. PubMed ID: 26253137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling mutual exclusivity of cancer mutations.
    Szczurek E; Beerenwinkel N
    PLoS Comput Biol; 2014 Mar; 10(3):e1003503. PubMed ID: 24675718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence.
    Canisius S; Martens JW; Wessels LF
    Genome Biol; 2016 Dec; 17(1):261. PubMed ID: 27986087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Entropy-Based Method for Identifying Mutual Exclusive Driver Genes in Cancer.
    Song J; Peng W; Wang F
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):758-768. PubMed ID: 30763245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MEScan: a powerful statistical framework for genome-scale mutual exclusivity analysis of cancer mutations.
    Liu S; Liu J; Xie Y; Zhai T; Hinderer EW; Stromberg AJ; Vanderford NL; Kolesar JM; Moseley HNB; Chen L; Liu C; Wang C
    Bioinformatics; 2021 Jun; 37(9):1189-1197. PubMed ID: 33165532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of driver pathways using mutated gene network in cancer.
    Li F; Gao L; Ma X; Yang X
    Mol Biosyst; 2016 Jun; 12(7):2135-41. PubMed ID: 27118146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying Epistasis in Cancer Genomes: A Delicate Affair.
    van de Haar J; Canisius S; Yu MK; Voest EE; Wessels LFA; Ideker T
    Cell; 2019 May; 177(6):1375-1383. PubMed ID: 31150618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A weighted exact test for mutually exclusive mutations in cancer.
    Leiserson MD; Reyna MA; Raphael BJ
    Bioinformatics; 2016 Sep; 32(17):i736-i745. PubMed ID: 27587696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CDPath: Cooperative Driver Pathways Discovery Using Integer Linear Programming and Markov Clustering.
    Yang Z; Yu G; Guo M; Yu J; Zhang X; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1384-1395. PubMed ID: 31581094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations.
    Babur Ö; Gönen M; Aksoy BA; Schultz N; Ciriello G; Sander C; Demir E
    Genome Biol; 2015 Feb; 16(1):45. PubMed ID: 25887147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Effective Graph Clustering Method to Identify Cancer Driver Modules.
    Zhang W; Zeng Y; Wang L; Liu Y; Cheng YN
    Front Bioeng Biotechnol; 2020; 8():271. PubMed ID: 32318558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers.
    Wang T; Ruan S; Zhao X; Shi X; Teng H; Zhong J; You M; Xia K; Sun Z; Mao F
    Nucleic Acids Res; 2021 Jan; 49(D1):D1289-D1301. PubMed ID: 33179738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual exclusivity analysis identifies oncogenic network modules.
    Ciriello G; Cerami E; Sander C; Schultz N
    Genome Res; 2012 Feb; 22(2):398-406. PubMed ID: 21908773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.