These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 33177794)
1. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning. Jang HJ; Lee A; Kang J; Song IH; Lee SH World J Gastroenterol; 2020 Oct; 26(40):6207-6223. PubMed ID: 33177794 [TBL] [Abstract][Full Text] [Related]
2. Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach. Jang HJ; Lee A; Kang J; Song IH; Lee SH World J Gastroenterol; 2021 Nov; 27(44):7687-7704. PubMed ID: 34908807 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer. Lee SH; Song IH; Jang HJ Int J Cancer; 2021 Aug; 149(3):728-740. PubMed ID: 33851412 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study. Bilal M; Raza SEA; Azam A; Graham S; Ilyas M; Cree IA; Snead D; Minhas F; Rajpoot NM Lancet Digit Health; 2021 Dec; 3(12):e763-e772. PubMed ID: 34686474 [TBL] [Abstract][Full Text] [Related]
5. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images. Lou J; Xu J; Zhang Y; Sun Y; Fang A; Liu J; Mur LAJ; Ji B Comput Methods Programs Biomed; 2022 Oct; 225():107095. PubMed ID: 36057226 [TBL] [Abstract][Full Text] [Related]
6. Integrative deep learning analysis improves colon adenocarcinoma patient stratification at risk for mortality. Zhou J; Foroughi Pour A; Deirawan H; Daaboul F; Aung TN; Beydoun R; Ahmed FS; Chuang JH EBioMedicine; 2023 Aug; 94():104726. PubMed ID: 37499603 [TBL] [Abstract][Full Text] [Related]
7. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492 [TBL] [Abstract][Full Text] [Related]
8. Spatially aware graph neural networks and cross-level molecular profile prediction in colon cancer histopathology: a retrospective multi-cohort study. Ding K; Zhou M; Wang H; Zhang S; Metaxas DN Lancet Digit Health; 2022 Nov; 4(11):e787-e795. PubMed ID: 36307192 [TBL] [Abstract][Full Text] [Related]
9. Lung Cancer Diagnosis on Virtual Histologically Stained Tissue Using Weakly Supervised Learning. Chen Z; Wong IHM; Dai W; Lo CTK; Wong TTW Mod Pathol; 2024 Jun; 37(6):100487. PubMed ID: 38588884 [TBL] [Abstract][Full Text] [Related]
10. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer. Song JH; Hong Y; Kim ER; Kim SH; Sohn I J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259 [TBL] [Abstract][Full Text] [Related]
11. Deep learning captures selective features for discrimination of microsatellite instability from pathologic tissue slides of gastric cancer. Lee SH; Lee Y; Jang HJ Int J Cancer; 2023 Jan; 152(2):298-307. PubMed ID: 36054320 [TBL] [Abstract][Full Text] [Related]
13. Clinical actionability of triaging DNA mismatch repair deficient colorectal cancer from biopsy samples using deep learning. Jiang W; Mei WJ; Xu SY; Ling YH; Li WR; Kuang JB; Li HS; Hui H; Li JB; Cai MY; Pan ZZ; Zhang HZ; Li L; Ding PR EBioMedicine; 2022 Jul; 81():104120. PubMed ID: 35753152 [TBL] [Abstract][Full Text] [Related]
14. A novel deep learning-based algorithm combining histopathological features with tissue areas to predict colorectal cancer survival from whole-slide images. Li YJ; Chou HH; Lin PC; Shen MR; Hsieh SY J Transl Med; 2023 Oct; 21(1):731. PubMed ID: 37848862 [TBL] [Abstract][Full Text] [Related]
15. KRASFormer: a fully vision transformer-based framework for predicting Singh VK; Makhlouf Y; Sarker MMK; Craig S; Baena J; Greene C; Mason L; James JA; Salto-Tellez M; O'Reilly P; Maxwell P Biomed Phys Eng Express; 2024 Jul; 10(5):. PubMed ID: 38925106 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Epidermal Growth Factor Receptor Mutation Subtypes in Non-Small Cell Lung Cancer From Hematoxylin and Eosin-Stained Slides Using Deep Learning. Zhang W; Wang W; Xu Y; Wu K; Shi J; Li M; Feng Z; Liu Y; Zheng Y; Wu H Lab Invest; 2024 Aug; 104(8):102094. PubMed ID: 38871058 [TBL] [Abstract][Full Text] [Related]
17. Noninvasive KRAS mutation estimation in colorectal cancer using a deep learning method based on CT imaging. He K; Liu X; Li M; Li X; Yang H; Zhang H BMC Med Imaging; 2020 Jun; 20(1):59. PubMed ID: 32487083 [TBL] [Abstract][Full Text] [Related]
18. [Identifying Molecular Subtypes of Whole-Slide Image in Colorectal Cancer via Deep Learning]. Liao J; Feng XB; Wang YH; Guo LC Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):686-692. PubMed ID: 34323050 [TBL] [Abstract][Full Text] [Related]
19. Deep learning-based pathological prediction of lymph node metastasis for patient with renal cell carcinoma from primary whole slide images. Gao F; Jiang L; Guo T; Lin J; Xu W; Yuan L; Han Y; Yang J; Pan Q; Chen E; Zhang N; Chen S; Wang X J Transl Med; 2024 Jun; 22(1):568. PubMed ID: 38877591 [TBL] [Abstract][Full Text] [Related]
20. Deep learning can predict lymph node status directly from histology in colorectal cancer. Kiehl L; Kuntz S; Höhn J; Jutzi T; Krieghoff-Henning E; Kather JN; Holland-Letz T; Kopp-Schneider A; Chang-Claude J; Brobeil A; von Kalle C; Fröhling S; Alwers E; Brenner H; Hoffmeister M; Brinker TJ Eur J Cancer; 2021 Nov; 157():464-473. PubMed ID: 34649117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]