These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 33177916)
41. In silico study of structural determinants modulating the redox potential of Rigidoporus lignosus and other fungal laccases. Cambria MT; Gullotto D; Garavaglia S; Cambria A J Biomol Struct Dyn; 2012; 30(1):89-101. PubMed ID: 22571435 [TBL] [Abstract][Full Text] [Related]
42. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation. Awasthi M; Jaiswal N; Singh S; Pandey VP; Dwivedi UN J Biomol Struct Dyn; 2015 Sep; 33(9):1835-49. PubMed ID: 25301391 [TBL] [Abstract][Full Text] [Related]
43. Physiological responses to nanoCuO in fungi from non-polluted and metal-polluted streams. Pradhan A; Seena S; Dobritzsch D; Helm S; Gerth K; Dobritzsch M; Krauss GJ; Schlosser D; Pascoal C; Cássio F Sci Total Environ; 2014 Jan; 466-467():556-63. PubMed ID: 23955249 [TBL] [Abstract][Full Text] [Related]
44. Pushing the limits of automatic computational protein design: design, expression, and characterization of a large synthetic protein based on a fungal laccase scaffold. Glykys DJ; Szilvay GR; Tortosa P; Suárez Diez M; Jaramillo A; Banta S Syst Synth Biol; 2011 Jun; 5(1-2):45-58. PubMed ID: 22654993 [TBL] [Abstract][Full Text] [Related]
45. Engineering laccases: in search for novel catalysts. Robert V; Mekmouche Y; Pailley PR; Tron T Curr Genomics; 2011 Apr; 12(2):123-9. PubMed ID: 21966250 [TBL] [Abstract][Full Text] [Related]
46. Phylogenomic analyses reveal the diversity of laccase-coding genes in Fonsecaea genomes. Moreno LF; Feng P; Weiss VA; Vicente VA; Stielow JB; de Hoog S PLoS One; 2017; 12(2):e0171291. PubMed ID: 28187150 [TBL] [Abstract][Full Text] [Related]
47. High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications. Uzan E; Nousiainen P; Balland V; Sipila J; Piumi F; Navarro D; Asther M; Record E; Lomascolo A J Appl Microbiol; 2010 Jun; 108(6):2199-213. PubMed ID: 19968731 [TBL] [Abstract][Full Text] [Related]
48. FTFD: an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Park J; Park J; Jang S; Kim S; Kong S; Choi J; Ahn K; Kim J; Lee S; Kim S; Park B; Jung K; Kim S; Kang S; Lee YH Bioinformatics; 2008 Apr; 24(7):1024-5. PubMed ID: 18304934 [TBL] [Abstract][Full Text] [Related]
49. On the diversity of the laccase gene: a phylogenetic perspective from Botryosphaeria rhodina (Ascomycota: Fungi) and other related taxa. Castilho FJ; Torres RA; Barbosa AM; Dekker RF; Garcia JE Biochem Genet; 2009 Feb; 47(1-2):80-91. PubMed ID: 19160039 [TBL] [Abstract][Full Text] [Related]
50. The multigene family of fungal laccases and their expression in the white rot basidiomycete Flammulina velutipes. Wang W; Liu F; Jiang Y; Wu G; Guo L; Chen R; Chen B; Lu Y; Dai Y; Xie B Gene; 2015 Jun; 563(2):142-9. PubMed ID: 25776201 [TBL] [Abstract][Full Text] [Related]
51. Ligninolytic fungal laccases and their biotechnological applications. Singh Arora D; Kumar Sharma R Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857 [TBL] [Abstract][Full Text] [Related]
52. [Advance of heterologous expression study of eukaryote-origin laccases]. Ning N; Tan H; Sun X; Ni J Sheng Wu Gong Cheng Xue Bao; 2017 Apr; 33(4):565-577. PubMed ID: 28920390 [TBL] [Abstract][Full Text] [Related]
53. Expression and molecular properties of a new laccase of the white rot fungus Phlebia radiata grown on wood. Mäkelä MR; Hildén KS; Hakala TK; Hatakka A; Lundell TK Curr Genet; 2006 Nov; 50(5):323-33. PubMed ID: 16927090 [TBL] [Abstract][Full Text] [Related]
54. Fungal secretome database: integrated platform for annotation of fungal secretomes. Choi J; Park J; Kim D; Jung K; Kang S; Lee YH BMC Genomics; 2010 Feb; 11():105. PubMed ID: 20146824 [TBL] [Abstract][Full Text] [Related]
55. Fungal laccases and their applications in bioremediation. Viswanath B; Rajesh B; Janardhan A; Kumar AP; Narasimha G Enzyme Res; 2014; 2014():163242. PubMed ID: 24959348 [TBL] [Abstract][Full Text] [Related]
56. Properties of bacterial laccases and their application in bioremediation of industrial wastes. Chandra R; Chowdhary P Environ Sci Process Impacts; 2015 Feb; 17(2):326-42. PubMed ID: 25590782 [TBL] [Abstract][Full Text] [Related]
57. Features and applications of bilirubin oxidases. Mano N Appl Microbiol Biotechnol; 2012 Oct; 96(2):301-7. PubMed ID: 22878843 [TBL] [Abstract][Full Text] [Related]
58. Laccases from Aureobasidium pullulans. Rich JO; Leathers TD; Anderson AM; Bischoff KM; Manitchotpisit P Enzyme Microb Technol; 2013 Jun; 53(1):33-7. PubMed ID: 23683702 [TBL] [Abstract][Full Text] [Related]
59. Crystal structure of an ascomycete fungal laccase from Thielavia arenaria--common structural features of asco-laccases. Kallio JP; Gasparetti C; Andberg M; Boer H; Koivula A; Kruus K; Rouvinen J; Hakulinen N FEBS J; 2011 Jul; 278(13):2283-95. PubMed ID: 21535408 [TBL] [Abstract][Full Text] [Related]
60. Characterization of plant laccase genes and their functions. Bai Y; Ali S; Liu S; Zhou J; Tang Y Gene; 2023 Feb; 852():147060. PubMed ID: 36423777 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]