These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Metabolic reprogramming in the tumour microenvironment: a hallmark shared by cancer cells and T lymphocytes. Allison KE; Coomber BL; Bridle BW Immunology; 2017 Oct; 152(2):175-184. PubMed ID: 28621843 [TBL] [Abstract][Full Text] [Related]
25. To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Mondino A; Manzo T Front Immunol; 2020; 11():1915. PubMed ID: 32973794 [TBL] [Abstract][Full Text] [Related]
26. Targeting T cell metabolism for immunotherapy. Gao J; Liu Y; Wei J; Jiang L; Mao J; Chang CH; Wu D J Leukoc Biol; 2021 Dec; 110(6):1081-1090. PubMed ID: 34779530 [TBL] [Abstract][Full Text] [Related]
27. Acquired resistance to cancer immunotherapy. Draghi A; Chamberlain CA; Furness A; Donia M Semin Immunopathol; 2019 Jan; 41(1):31-40. PubMed ID: 29968044 [TBL] [Abstract][Full Text] [Related]
28. Firing Up Cold Tumors. Cheng WC; Ho PC Trends Cancer; 2019 Sep; 5(9):528-530. PubMed ID: 31474357 [TBL] [Abstract][Full Text] [Related]
29. T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition. Houot R; Schultz LM; Marabelle A; Kohrt H Cancer Immunol Res; 2015 Oct; 3(10):1115-22. PubMed ID: 26438444 [TBL] [Abstract][Full Text] [Related]
30. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy. Gao A; Sun Y; Peng G Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):278-285. PubMed ID: 29649510 [TBL] [Abstract][Full Text] [Related]
31. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH Front Immunol; 2020; 11():784. PubMed ID: 32457745 [TBL] [Abstract][Full Text] [Related]
32. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy. Li Z; Li Y; Gao J; Fu Y; Hua P; Jing Y; Cai M; Wang H; Tong T Life Sci; 2021 May; 273():119150. PubMed ID: 33662426 [TBL] [Abstract][Full Text] [Related]
33. PTEN loss correlates with T cell exclusion across human cancers. Lin Z; Huang L; Li SL; Gu J; Cui X; Zhou Y BMC Cancer; 2021 Apr; 21(1):429. PubMed ID: 33874915 [TBL] [Abstract][Full Text] [Related]
34. Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Bauer C; Kühnemuth B; Duewell P; Ormanns S; Gress T; Schnurr M Cancer Lett; 2016 Oct; 381(1):259-68. PubMed ID: 26968250 [TBL] [Abstract][Full Text] [Related]
35. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Galluzzi L; Buqué A; Kepp O; Zitvogel L; Kroemer G Cancer Cell; 2015 Dec; 28(6):690-714. PubMed ID: 26678337 [TBL] [Abstract][Full Text] [Related]
36. Interferon gamma inhibits CXCL8-CXCR2 axis mediated tumor-associated macrophages tumor trafficking and enhances anti-PD1 efficacy in pancreatic cancer. Zhang M; Huang L; Ding G; Huang H; Cao G; Sun X; Lou N; Wei Q; Shen T; Xu X; Cao L; Yan Q J Immunother Cancer; 2020 Feb; 8(1):. PubMed ID: 32051287 [TBL] [Abstract][Full Text] [Related]
37. Immunotherapy of gastric cancer: Past, future perspective and challenges. Xie J; Fu L; Jin L Pathol Res Pract; 2021 Feb; 218():153322. PubMed ID: 33422778 [TBL] [Abstract][Full Text] [Related]
38. Mechanisms of immune escape in the cancer immune cycle. Tang S; Ning Q; Yang L; Mo Z; Tang S Int Immunopharmacol; 2020 Sep; 86():106700. PubMed ID: 32590316 [TBL] [Abstract][Full Text] [Related]
39. Immuno-Metabolism and Microenvironment in Cancer: Key Players for Immunotherapy. Giannone G; Ghisoni E; Genta S; Scotto G; Tuninetti V; Turinetto M; Valabrega G Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575899 [TBL] [Abstract][Full Text] [Related]
40. Shaping Immune Responses in the Tumor Microenvironment of Ovarian Cancer. Luo X; Xu J; Yu J; Yi P Front Immunol; 2021; 12():692360. PubMed ID: 34248988 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]