These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 33178256)
21. Identification of Hub Gene GRIN1 Correlated with Histological Grade and Prognosis of Glioma by Weighted Gene Coexpression Network Analysis. Yang A; Wang X; Hu Y; Shang C; Hong Y Biomed Res Int; 2021; 2021():4542995. PubMed ID: 34840971 [TBL] [Abstract][Full Text] [Related]
22. Identifying subtype-specific associations between gene expression and DNA methylation profiles in breast cancer. Lee G; Bang L; Kim SY; Kim D; Sohn KA BMC Med Genomics; 2017 May; 10(Suppl 1):28. PubMed ID: 28589855 [TBL] [Abstract][Full Text] [Related]
23. Identification of aberrantly methylated differentially expressed genes in breast cancer by integrated bioinformatics analysis. Yi L; Luo P; Zhang J J Cell Biochem; 2019 Sep; 120(9):16229-16243. PubMed ID: 31081184 [TBL] [Abstract][Full Text] [Related]
24. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data. Franks JM; Cai G; Whitfield ML Bioinformatics; 2018 Jun; 34(11):1868-1874. PubMed ID: 29360996 [TBL] [Abstract][Full Text] [Related]
25. Predictions of the dysregulated competing endogenous RNA signature involved in the progression of human lung adenocarcinoma. Yang D; He Y; Wu B; Liu R; Wang N; Wang T; Luo Y; Li Y; Liu Y Cancer Biomark; 2020; 29(3):399-416. PubMed ID: 32741804 [TBL] [Abstract][Full Text] [Related]
26. Identifying Cancer Subtypes Using a Residual Graph Convolution Model on a Sample Similarity Network. Dai W; Yue W; Peng W; Fu X; Liu L; Liu L Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052405 [TBL] [Abstract][Full Text] [Related]
27. Weighted Gene Coexpression Network Analysis Reveals the Critical lncRNAs and mRNAs in Development of Hirschsprung's Disease. Niu X; Xu Y; Gao N; Li A J Comput Biol; 2020 Jul; 27(7):1115-1129. PubMed ID: 31647312 [TBL] [Abstract][Full Text] [Related]
28. Identification of genes and pathways related to breast cancer metastasis in an integrated cohort. Wang L; Mo C; Wang L; Cheng M Eur J Clin Invest; 2021 Jul; 51(7):e13525. PubMed ID: 33615456 [TBL] [Abstract][Full Text] [Related]
29. Transcriptome profiling revealed multiple genes and ECM-receptor interaction pathways that may be associated with breast cancer. Bao Y; Wang L; Shi L; Yun F; Liu X; Chen Y; Chen C; Ren Y; Jia Y Cell Mol Biol Lett; 2019; 24():38. PubMed ID: 31182966 [TBL] [Abstract][Full Text] [Related]
30. Identification of differently expressed genes with specific SNP Loci for breast cancer by the integration of SNP and gene expression profiling analyses. Yuan P; Liu D; Deng M; Liu J; Wang J; Zhang L; Liu Q; Zhang T; Chen Y; Jin G Pathol Oncol Res; 2015 Apr; 21(2):469-75. PubMed ID: 25408372 [TBL] [Abstract][Full Text] [Related]
31. Identification of the key pathways and genes involved in HER2-positive breast cancer with brain metastasis. Lu X; Gao C; Liu C; Zhuang J; Su P; Li H; Wang X; Sun C Pathol Res Pract; 2019 Aug; 215(8):152475. PubMed ID: 31178227 [TBL] [Abstract][Full Text] [Related]
32. Identification of novel therapeutic target genes in acquired lapatinib-resistant breast cancer by integrative meta-analysis. Lee YS; Hwang SG; Kim JK; Park TH; Kim YR; Myeong HS; Choi JD; Kwon K; Jang CS; Ro YT; Noh YH; Kim SY Tumour Biol; 2016 Feb; 37(2):2285-97. PubMed ID: 26361955 [TBL] [Abstract][Full Text] [Related]
33. Transcriptome analysis identifies the differentially expressed genes related to the stemness of limbal stem cells in mice. Guo ZH; Jia YYS; Zeng YM; Li ZF; Lin JS Gene; 2021 Apr; 775():145447. PubMed ID: 33482278 [TBL] [Abstract][Full Text] [Related]
34. Identification of differentially expressed genes and typical fusion genes associated with three subtypes of breast cancer. Wang R; Li J; Yin C; Zhao D; Yin L Breast Cancer; 2019 May; 26(3):305-316. PubMed ID: 30446971 [TBL] [Abstract][Full Text] [Related]
35. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer. Peng C; Ma W; Xia W; Zheng W Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450 [TBL] [Abstract][Full Text] [Related]
36. Combined Analysis of ChIP Sequencing and Gene Expression Dataset in Breast Cancer. Liu P; Jiang W; Zhou S; Gao J; Zhang H Pathol Oncol Res; 2017 Apr; 23(2):361-368. PubMed ID: 27654269 [TBL] [Abstract][Full Text] [Related]
37. Detecting Interactive Gene Groups for Single-Cell RNA-Seq Data Based on Co-Expression Network Analysis and Subgraph Learning. Ye X; Zhang W; Futamura Y; Sakurai T Cells; 2020 Aug; 9(9):. PubMed ID: 32825786 [TBL] [Abstract][Full Text] [Related]
38. Bioinformatics analysis of gene expression data for the identification of critical genes in breast invasive carcinoma. Li Y; Wang Y Mol Med Rep; 2017 Dec; 16(6):8657-8664. PubMed ID: 28990063 [TBL] [Abstract][Full Text] [Related]
39. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer. Yang C; Gong A Int J Med Sci; 2021; 18(3):792-800. PubMed ID: 33437215 [No Abstract] [Full Text] [Related]
40. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]