BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 33179140)

  • 1. The regulatory roles of p53 in cardiovascular health and disease.
    Men H; Cai H; Cheng Q; Zhou W; Wang X; Huang S; Zheng Y; Cai L
    Cell Mol Life Sci; 2021 Mar; 78(5):2001-2018. PubMed ID: 33179140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the
    Sun Y; Wang Q; Fang Y; Wu C; Lu G; Chen Z
    Dis Model Mech; 2017 Oct; 10(10):1217-1227. PubMed ID: 28801532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p53 and Mdm2 act synergistically to maintain cardiac homeostasis and mediate cardiomyocyte cell cycle arrest through a network of microRNAs.
    Stanley-Hasnain S; Hauck L; Grothe D; Aschar-Sobbi R; Beca S; Butany J; Backx PH; Mak TW; Billia F
    Cell Cycle; 2017; 16(17):1585-1600. PubMed ID: 28745540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor suppressor p53 and its mutants in cancer metabolism.
    Liu J; Zhang C; Hu W; Feng Z
    Cancer Lett; 2015 Jan; 356(2 Pt A):197-203. PubMed ID: 24374014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies.
    Ramachandra CJA; Chua J; Cong S; Kp MMJ; Shim W; Wu JC; Hausenloy DJ
    Cardiovasc Res; 2021 Feb; 117(3):694-711. PubMed ID: 32365198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discussion of some 'knowns' and some 'unknowns' about the tumour suppressor p53.
    Lieschke E; Wang Z; Kelly GL; Strasser A
    J Mol Cell Biol; 2019 Mar; 11(3):212-223. PubMed ID: 30496435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of p53 prevents diabetic cardiomyopathy by preventing early-stage apoptosis and cell senescence, reduced glycolysis, and impaired angiogenesis.
    Gu J; Wang S; Guo H; Tan Y; Liang Y; Feng A; Liu Q; Damodaran C; Zhang Z; Keller BB; Zhang C; Cai L
    Cell Death Dis; 2018 Jan; 9(2):82. PubMed ID: 29362483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperation between p21 and Akt is required for p53-dependent cellular senescence.
    Kim YY; Jee HJ; Um JH; Kim YM; Bae SS; Yun J
    Aging Cell; 2017 Oct; 16(5):1094-1103. PubMed ID: 28691365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CDK2 transcriptional repression is an essential effector in p53-dependent cellular senescence-implications for therapeutic intervention.
    Zalzali H; Nasr B; Harajly M; Basma H; Ghamloush F; Ghayad S; Ghanem N; Evan GI; Saab R
    Mol Cancer Res; 2015 Jan; 13(1):29-40. PubMed ID: 25149358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress and challenges in understanding the regulation and function of p53 dynamics.
    Yang Z; Hanson RL; Batchelor E
    Biochem Soc Trans; 2021 Nov; 49(5):2123-2131. PubMed ID: 34495325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. circLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma.
    Chen Z; Zuo X; Pu L; Zhang Y; Han G; Zhang L; Wu J; Wang X
    Cancer Sci; 2019 Feb; 110(2):568-581. PubMed ID: 30520539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RBM10, a New Regulator of p53.
    Jung JH; Lee H; Zeng SX; Lu H
    Cells; 2020 Sep; 9(9):. PubMed ID: 32947864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting LINC00673 expression triggers cellular senescence in lung cancer.
    Roth A; Boulay K; Groß M; Polycarpou-Schwarz M; Mallette FA; Regnier M; Bida O; Ginsberg D; Warth A; Schnabel PA; Muley T; Meister M; Zabeck H; Hoffmann H; Diederichs S
    RNA Biol; 2018; 15(12):1499-1511. PubMed ID: 30499379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sirtuin 3 Alleviates Diabetic Cardiomyopathy by Regulating TIGAR and Cardiomyocyte Metabolism.
    Li L; Zeng H; He X; Chen JX
    J Am Heart Assoc; 2021 Feb; 10(5):e018913. PubMed ID: 33586458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation and function of p53: A perspective from Drosophila studies.
    Ingaramo MC; Sánchez JA; Dekanty A
    Mech Dev; 2018 Dec; 154():82-90. PubMed ID: 29800619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation.
    Nakamura H; Matoba S; Iwai-Kanai E; Kimata M; Hoshino A; Nakaoka M; Katamura M; Okawa Y; Ariyoshi M; Mita Y; Ikeda K; Okigaki M; Adachi S; Tanaka H; Takamatsu T; Matsubara H
    Circ Heart Fail; 2012 Jan; 5(1):106-15. PubMed ID: 22075967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells.
    Zuo S; Liu C; Wang J; Wang F; Xu W; Cui S; Yuan L; Chen X; Fan W; Cui M; Song G
    J Cancer Res Clin Oncol; 2012 Jun; 138(6):1045-55. PubMed ID: 22392074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Senescence and aging: the critical roles of p53.
    Rufini A; Tucci P; Celardo I; Melino G
    Oncogene; 2013 Oct; 32(43):5129-43. PubMed ID: 23416979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of BRG1 induces CRC cell senescence by regulating p53/p21 pathway.
    Wang G; Fu Y; Hu F; Lan J; Xu F; Yang X; Luo X; Wang J; Hu J
    Cell Death Dis; 2017 Feb; 8(2):e2607. PubMed ID: 28182012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-30c and miR-181a synergistically modulate p53-p21 pathway in diabetes induced cardiac hypertrophy.
    Raut SK; Singh GB; Rastogi B; Saikia UN; Mittal A; Dogra N; Singh S; Prasad R; Khullar M
    Mol Cell Biochem; 2016 Jun; 417(1-2):191-203. PubMed ID: 27221738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.