BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 33179183)

  • 1. Conventional pyrolysis of Plastic waste for Product recovery and utilization of pyrolytic gases for carbon nanotubes production.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20007-20016. PubMed ID: 33179183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of pyrolytic non-condensable gases from polypropylene co-polymer into bamboo-type carbon nanotubes and high-quality oil using biochar as catalyst.
    Shah K; Patel S; Halder P; Kundu S; Marzbali MH; Hakeem IG; Pramanik BK; Chiang K; Patel T
    J Environ Manage; 2022 Jan; 301():113791. PubMed ID: 34592670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs.
    Faisal F; Rasul MG; Jahirul MI; Schaller D
    Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disposal of plastic mulching film through CO
    Jung JM; Cho SH; Jung S; Lin KA; Chen WH; Tsang YF; Kwon EE
    J Hazard Mater; 2022 May; 430():128454. PubMed ID: 35168100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous production of high-valued carbon nanotubes and hydrogen from catalytic pyrolysis of waste plastics: The role of cellulose impurity.
    Liu Q; Peng B; Cai N; Su Y; Wang S; Wu P; Cao Q; Zhang H
    Waste Manag; 2024 Feb; 174():420-428. PubMed ID: 38104414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design.
    Sekar M; Ponnusamy VK; Pugazhendhi A; Nižetić S; Praveenkumar TR
    J Environ Manage; 2022 Jan; 302(Pt B):114046. PubMed ID: 34775338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 2: Effect of process temperature on product characteristics and their future applications.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2020 May; 261():110112. PubMed ID: 32001431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.
    Papari S; Bamdad H; Berruti F
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor.
    Kremer I; Tomić T; Katančić Z; Erceg M; Papuga S; Vuković JP; Schneider DR
    J Environ Manage; 2021 Oct; 296():113145. PubMed ID: 34271358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The clean energy aspect of plastic waste - hydrogen gas production, CO
    Sudalaimuthu P; Sathyamurthy R
    Environ Sci Pollut Res Int; 2023 May; 30(25):66559-66584. PubMed ID: 37133666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing plastic waste via pyrolysis-thermolysis into hydrogen and solid carbon additive to ethylene-vinyl acetate foam for cushioning applications.
    Wang Y; Chang BP; Veksha A; Kashcheev A; Tok ALY; Lipik V; Yoshiie R; Ueki Y; Naruse I; Lisak G
    J Hazard Mater; 2024 Feb; 464():132996. PubMed ID: 37988865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE).
    Santella C; Cafiero L; De Angelis D; La Marca F; Tuffi R; Vecchio Ciprioti S
    Waste Manag; 2016 Aug; 54():143-52. PubMed ID: 27184448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of waste plastics into low emissive hydrocarbon fuel using catalyst produced from biowaste.
    Jahnavi N; Kanmani K; Kumar PS; Varjani S
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63638-63645. PubMed ID: 33113066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel.
    Das P; Tiwari P
    Waste Manag; 2018 Sep; 79():615-624. PubMed ID: 30343794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis of polyolefins for increasing the yield of monomers' recovery.
    Donaj PJ; Kaminsky W; Buzeto F; Yang W
    Waste Manag; 2012 May; 32(5):840-6. PubMed ID: 22093704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature conversion of plastic waste into light hydrocarbons.
    Shah SH; Khan ZM; Raja IA; Mahmood Q; Bhatti ZA; Khan J; Farooq A; Rashid N; Wu D
    J Hazard Mater; 2010 Jul; 179(1-3):15-20. PubMed ID: 20172649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of carbon nanofibers/tubes using waste tyres pyrolysis oil and coal fly ash derived catalyst.
    Rambau KM; Musyoka NM; Manyala N; Ren J; Langmi HW; Mathe MK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(12):1115-1122. PubMed ID: 29843557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.