BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33179611)

  • 1. Single-bubble dynamics in histotripsy and high-amplitude ultrasound: Modeling and validation.
    Mancia L; Rodriguez M; Sukovich J; Xu Z; Johnsen E
    Phys Med Biol; 2020 Nov; 65(22):225014. PubMed ID: 33179611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy.
    Bader KB; Vlaisavljevich E; Maxwell AD
    Ultrasound Med Biol; 2019 May; 45(5):1056-1080. PubMed ID: 30922619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble dynamics in boiling histotripsy.
    Pahk KJ; GĂ©lat P; Kim H; Saffari N
    Ultrasound Med Biol; 2018 Dec; 44(12):2673-2696. PubMed ID: 30228043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision control of lesions by high-intensity focused ultrasound cavitation-based histotripsy through varying pulse duration.
    Xu J; Bigelow TA; Nagaraju R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1401-11. PubMed ID: 25004507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Histotripsy and Bubble Coalescence Transducer for Thrombolysis.
    Shi A; Lundt J; Deng Z; Macoskey J; Gurm H; Owens G; Zhang X; Hall TL; Xu Z
    Ultrasound Med Biol; 2018 Dec; 44(12):2697-2709. PubMed ID: 30279032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubble Cloud Behavior and Ablation Capacity for Histotripsy Generated from Intrinsic or Artificial Cavitation Nuclei.
    Edsall C; Khan ZM; Mancia L; Hall S; Mustafa W; Johnsen E; Klibanov AL; Durmaz YY; Vlaisavljevich E
    Ultrasound Med Biol; 2021 Mar; 47(3):620-639. PubMed ID: 33309443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavitation-induced pressure saturation: a mechanism governing bubble nucleation density in histotripsy.
    Maxwell AD; Vlaisavljevich E
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38518377
    [No Abstract]   [Full Text] [Related]  

  • 8. Predicting the growth of nanoscale nuclei by histotripsy pulses.
    Bader KB; Holland CK
    Phys Med Biol; 2016 Apr; 61(7):2947-66. PubMed ID: 26988374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of medium elasticity on the prediction of histotripsy-induced bubble expansion and erythrocyte viability.
    Bader KB
    Phys Med Biol; 2018 May; 63(9):095010. PubMed ID: 29553049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubble cloud characteristics and ablation efficiency in dual-frequency intrinsic threshold histotripsy.
    Edsall C; Huynh L; Hall TL; Vlaisavljevich E
    Phys Med Biol; 2023 Nov; 68(22):. PubMed ID: 37797649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic Methods for Increasing the Cavitation Initiation Pressure Threshold.
    Alavi Tamaddoni H; Duryea AP; Vlaisavljevich E; Xu Z; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2012-2019. PubMed ID: 30176587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of bubble activity generated by histotripsy combined with echogenic liposomes.
    Bhargava A; Huang S; McPherson DD; Bader KB
    Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36220055
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of pulse repetition frequency on bubble cloud characteristics and ablation in single-cycle histotripsy.
    Simon A; Edsall C; Maxwell A; Vlaisavljevich E
    Phys Med Biol; 2024 Jan; 69(2):. PubMed ID: 38041873
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior.
    Vlaisavljevich E; Lin KW; Warnez MT; Singh R; Mancia L; Putnam AJ; Johnsen E; Cain C; Xu Z
    Phys Med Biol; 2015 Mar; 60(6):2271-92. PubMed ID: 25715732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of frequency on bubble-cloud behavior and ablation efficiency in intrinsic threshold histotripsy.
    Edsall C; Ham E; Holmes H; Hall TL; Vlaisavljevich E
    Phys Med Biol; 2021 Nov; 66(22):. PubMed ID: 34706348
    [No Abstract]   [Full Text] [Related]  

  • 16. Predicting Tissue Susceptibility to Mechanical Cavitation Damage in Therapeutic Ultrasound.
    Mancia L; Vlaisavljevich E; Xu Z; Johnsen E
    Ultrasound Med Biol; 2017 Jul; 43(7):1421-1440. PubMed ID: 28408061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.
    Vlaisavljevich E; Lin KW; Maxwell A; Warnez MT; Mancia L; Singh R; Putnam AJ; Fowlkes B; Johnsen E; Cain C; Xu Z
    Ultrasound Med Biol; 2015 Jun; 41(6):1651-67. PubMed ID: 25766571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the dynamics of a boiling vapour bubble using pressure-modulated high intensity focused ultrasound without the shock scattering effect: A first proof-of-concept study.
    Pahk KJ
    Ultrason Sonochem; 2021 Sep; 77():105699. PubMed ID: 34371476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy.
    Hu H; Xu S; Yuan Y; Liu R; Wang S; Wan M
    J Acoust Soc Am; 2015 May; 137(5):2563-72. PubMed ID: 25994689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the mechanical energy of histotripsy bubble clouds with high frame rate imaging.
    Bader KB; Wallach EL; Shekhar H; Flores-Guzman F; Halpern HJ; Hernandez SL
    Phys Med Biol; 2021 Aug; 66(16):. PubMed ID: 34271560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.