BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33179661)

  • 21. Lithography-free wide-angle polarization-independent ultra-broadband absorber based on anti-reflection effect.
    Liao YL; Zhou J; Chen X; Wu J; Chen Z; Wu S; Zhao Y
    Opt Express; 2022 May; 30(10):16847-16855. PubMed ID: 36221519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-Wideband and Wide-Angle Perfect Solar Energy Absorber Based on Titanium and Silicon Dioxide Colloidal Nanoarray Structure.
    Wu P; Wei K; Xu D; Chen M; Zeng Y; Jian R
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance.
    Zhou F; Qin F; Yi Z; Yao W; Liu Z; Wu X; Wu P
    Phys Chem Chem Phys; 2021 Aug; 23(31):17041-17048. PubMed ID: 34342321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrabroadband metamaterial absorbers from ultraviolet to near-infrared based on multiple resonances for harvesting solar energy.
    Feng H; Li X; Wang M; Xia F; Zhang K; Kong W; Dong L; Yun M
    Opt Express; 2021 Feb; 29(4):6000-6010. PubMed ID: 33726131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy.
    Song D; Zhang K; Qian M; Liu Y; Wu X; Yu K
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-perfect spectrally-selective metasurface solar absorber based on tungsten octagonal prism array.
    Xu M; Guo L; Zhang P; Qiu Y; Li Q; Wang J
    RSC Adv; 2022 Jun; 12(26):16823-16834. PubMed ID: 35754914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms.
    Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of Split Hexagonal Patch Array Shaped Nano-metaabsorber with Ultra-wideband Absorption for Visible and UV Spectrum Application.
    Hoque A; Islam MT; Almutairi AF; Faruque MRI
    Nanoscale Res Lett; 2019 Dec; 14(1):393. PubMed ID: 31879809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broadband Plasmonic Metamaterial Optical Absorber for the Visible to Near-Infrared Region.
    Musa A; Alam T; Islam MT; Hakim ML; Rmili H; Alshammari AS; Islam MS; Soliman MS
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36838994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polarization and angular insensitive bendable metamaterial absorber for UV to NIR range.
    Shuvo MMK; Hossain MI; Mahmud S; Rahman S; Topu MTH; Hoque A; Islam SS; Soliman MS; Almalki SHA; Islam MS; Islam MT
    Sci Rep; 2022 Mar; 12(1):4857. PubMed ID: 35318387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable broadband, wide-angle, and polarization-dependent perfect infrared absorber based on planar structure containing phase-change material.
    Wang X; Ding W; Zhu H; Liu C; Liu Y
    Appl Opt; 2018 Oct; 57(30):8915-8920. PubMed ID: 30461873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wide-Oblique-Incident-Angle Stable Polarization-Insensitive Ultra-Wideband Metamaterial Perfect Absorber for Visible Optical Wavelength Applications.
    Hakim ML; Alam T; Islam MS; Salaheldeen M M; Almalki SHA; Baharuddin MH; Alsaif H; Islam MT
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-broadband, wide-angle plus-shape slotted metamaterial solar absorber design with absorption forecasting using machine learning.
    Patel SK; Parmar J; Katkar V
    Sci Rep; 2022 Jun; 12(1):10166. PubMed ID: 35715482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broadband and Efficient Metamaterial Absorber Design Based on Gold-MgF2-Tungsten Hybrid Structure for Solar Thermal Application.
    Armghan A; Alsharari M; Aliqab K
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces.
    Ye L; Chen X; Cai G; Zhu J; Liu N; Liu QH
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30042289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands.
    Gao H; Zhou D; Cui W; Liu Z; Liu Y; Jing Z; Peng W
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):264-269. PubMed ID: 30874104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Broadband light absorption by a hemispherical concentric nanoshell array.
    Jiang X; Fan F; Su F; Mu T; Huang C; Zhou L; Hu J
    Nanotechnology; 2024 Mar; 35(23):. PubMed ID: 38430569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MoS
    Sun Z; Huang F; Fu Y
    Appl Opt; 2020 Aug; 59(22):6671-6676. PubMed ID: 32749370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broadband Solar Absorber Based on Square Ring cross Arrays of ZnS.
    Xu F; Lin L; Fang J; Huang M; Wang F; Su J; Li S; Pan M
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.