These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 33179661)

  • 41. Broadband Solar Absorber Based on Square Ring cross Arrays of ZnS.
    Xu F; Lin L; Fang J; Huang M; Wang F; Su J; Li S; Pan M
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442530
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An ultra-broadband solar absorber based on α-GST/Fe metamaterials from visible light to mid-infrared.
    Pan Y; Li Y; Chen F; Cheng S; Yang W; Wang B; Yi Z; Yao D
    Phys Chem Chem Phys; 2023 Oct; 25(40):27586-27594. PubMed ID: 37807903
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultra-Wideband High-Efficiency Solar Absorber and Thermal Emitter Based on Semiconductor InAs Microstructures.
    Zhu Y; Cai P; Zhang W; Meng T; Tang Y; Yi Z; Wei K; Li G; Tang B; Yi Y
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wide-angle, polarization-insensitive, and broadband metamaterial absorber based on multilayered metal-dielectric structures.
    Liu P; Lan T
    Appl Opt; 2017 May; 56(14):4201-4205. PubMed ID: 29047556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Broadband Perfect Absorber with Monolayer MoS
    Huo D; Zhang J; Wang H; Ren X; Wang C; Su H; Zhao H
    Nanoscale Res Lett; 2017 Dec; 12(1):465. PubMed ID: 28747042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visible and Near-Infrared Broadband Absorber Based on Ti
    Jia Y; Wu T; Wang G; Jiang J; Miao F; Gao Y
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014616
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Broadband terahertz absorber with tunable frequency and bandwidth by using Dirac semimetal and strontium titanate.
    Wu T; Shao Y; Ma S; Wang G; Gao Y
    Opt Express; 2021 Mar; 29(5):7713-7723. PubMed ID: 33726267
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm.
    Cai H; Sun Y; Wang X; Zhan S
    Opt Express; 2020 May; 28(10):15347-15359. PubMed ID: 32403564
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting.
    Ashrafi-Peyman Z; Jafargholi A; Moshfegh AZ
    Nanoscale; 2024 Feb; 16(7):3591-3605. PubMed ID: 38270171
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial.
    Li S; Gao J; Cao X; Zhang Z; Zheng Y; Zhang C
    Opt Express; 2015 Feb; 23(3):3523-33. PubMed ID: 25836206
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Easily Repairable and High-Performance Carbon Nanostructure Absorber for Solar Photothermoelectric Conversion and Photothermal Water Evaporation.
    Cheng P; Wang D
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8761-8769. PubMed ID: 36744969
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies.
    Song Z; Zhang J
    Opt Express; 2020 Apr; 28(8):12487-12497. PubMed ID: 32403745
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state.
    Wu F; Wu X; Xiao S; Liu G; Li H
    Opt Express; 2021 Jul; 29(15):23976-23987. PubMed ID: 34614651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks.
    Li Y; Liu Z; Zhang H; Tang P; Wu B; Liu G
    Opt Express; 2019 Apr; 27(8):11809-11818. PubMed ID: 31053021
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Infrared Ultra-Broadband Absorber Based on MIM Structure.
    Li M; Wang G; Gao Y; Gao Y
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234605
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tungsten-based highly selective solar absorber using simple nanodisk array.
    Han X; He K; He Z; Zhang Z
    Opt Express; 2017 Nov; 25(24):A1072-A1078. PubMed ID: 29220985
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thin-Film Solar Energy Absorber Structure for Window Coatings for Self-Sufficient Futuristic Buildings.
    Alsaif H; Muheki J; Ben Ali N; Ghachem K; Surve J; Patel SK
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630164
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
    Dang PT; Le KQ; Lee JH; Nguyen TK
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An Innovative Polarisation-Insensitive Perfect Metamaterial Absorber with an Octagonal-Shaped Resonator for Energy Harvesting at Visible Spectra.
    Hossain MJ; Rahman MH; Faruque MRI
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.