BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33179710)

  • 21. Carbon-Based Fluorescent Nano-Biosensors for the Detection of Cell-Free Circulating MicroRNAs.
    Ratre P; Nazeer N; Kumari R; Thareja S; Jain B; Tiwari R; Kamthan A; Srivastava RK; Mishra PK
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36831992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advanced methods for microRNA biosensing: a problem-solving perspective.
    D'Agata R; Spoto G
    Anal Bioanal Chem; 2019 Jul; 411(19):4425-4444. PubMed ID: 30710205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resettable and enzyme-free molecular logic devices for the intelligent amplification detection of multiple miRNAs via catalyzed hairpin assembly.
    Zhang S; Li KB; Shi W; Zhang J; Han DM; Xu JJ
    Nanoscale; 2019 Mar; 11(11):5048-5057. PubMed ID: 30839977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fe₃O₄@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells.
    Pang Y; Wang C; Wang J; Sun Z; Xiao R; Wang S
    Biosens Bioelectron; 2016 May; 79():574-80. PubMed ID: 26749099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assay of miRNA in cell samples using enhanced resonance light scattering technique based on self aggregation of magnetic nanoparticles.
    Yue Q; Tao L; Hou Y; Zhang C; Wang Y; Hong M; Li CZ
    Nanomedicine (Lond); 2018 Sep; 13(18):2301-2310. PubMed ID: 30284477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor.
    Ge Z; Lin M; Wang P; Pei H; Yan J; Shi J; Huang Q; He D; Fan C; Zuo X
    Anal Chem; 2014 Feb; 86(4):2124-30. PubMed ID: 24495151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QCM sensing of miR-21 by formation of microRNA-DNA hybrid duplexes and intercalation on surface-functionalized pyrene.
    Park HJ; Lee SS
    Analyst; 2019 Nov; 144(23):6936-6943. PubMed ID: 31617512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative and Specific Detection of Exosomal miRNAs for Accurate Diagnosis of Breast Cancer Using a Surface-Enhanced Raman Scattering Sensor Based on Plasmonic Head-Flocked Gold Nanopillars.
    Lee JU; Kim WH; Lee HS; Park KH; Sim SJ
    Small; 2019 Apr; 15(17):e1804968. PubMed ID: 30828996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Luminescent quantum dots for miRNA detection.
    Goryacheva OA; Mishra PK; Goryacheva IY
    Talanta; 2018 Mar; 179():456-465. PubMed ID: 29310260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MicroRNA sensors based on gold nanoparticles.
    Coutinho C; Somoza Á
    Anal Bioanal Chem; 2019 Mar; 411(9):1807-1824. PubMed ID: 30390112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of the effect of phytohormone on the expression of microRNA-159a in Arabidopsis thaliana seedlings based on mimic enzyme catalysis systematic electrochemical biosensor.
    Zhou Y; Wang M; Xu Z; Ni C; Yin H; Ai S
    Biosens Bioelectron; 2014 Apr; 54():244-50. PubMed ID: 24287411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.
    Le BH; Seo YJ
    Anal Chim Acta; 2018 Jan; 999():155-160. PubMed ID: 29254567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification.
    Huang Y; Wang W; Wu T; Xu LP; Wen Y; Zhang X
    Anal Bioanal Chem; 2016 Nov; 408(28):8195-8202. PubMed ID: 27624762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasensitive Detection of MicroRNA via a Au@Ag Nanosnowman.
    Zhao Y; Gao XY; Wang H; Wang J; Zhou J; Zhao W; Xu JJ; Chen HY
    Anal Chem; 2019 Dec; 91(24):15988-15992. PubMed ID: 31718153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays.
    Wang Y; Knoll W; Dostalek J
    Anal Chem; 2012 Oct; 84(19):8345-50. PubMed ID: 22931462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gold-loaded nanoporous superparamagnetic nanocubes for catalytic signal amplification in detecting miRNA.
    Kamal Masud M; Islam MN; Haque MH; Tanaka S; Gopalan V; Alici G; Nguyen NT; Lam AK; Hossain MSA; Yamauchi Y; Shiddiky MJA
    Chem Commun (Camb); 2017 Jul; 53(58):8231-8234. PubMed ID: 28681881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasensitive detection of microRNA based on a homogeneous label-free electrochemical platform using G-triplex/methylene blue as a signal generator.
    Zhao LL; Pan HY; Zhang XX; Zhou YL
    Anal Chim Acta; 2020 Jun; 1116():62-69. PubMed ID: 32389190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-Electrode Synthesis of Shape-Controlled Hierarchical Flower-Like Gold Nanostructures for Efficient Interfacial DNA Assembly and Sensitive Electrochemical Sensing of MicroRNA.
    Su S; Wu Y; Zhu D; Chao J; Liu X; Wan Y; Su Y; Zuo X; Fan C; Wang L
    Small; 2016 Jul; 12(28):3794-801. PubMed ID: 27305644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques.
    Kilic T; Erdem A; Ozsoz M; Carrara S
    Biosens Bioelectron; 2018 Jan; 99():525-546. PubMed ID: 28823978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid and sensitive detection of microRNA via the capture of fluorescent dyes-loaded albumin nanoparticles around functionalized magnetic beads.
    Wei T; Du D; Wang Z; Zhang W; Lin Y; Dai Z
    Biosens Bioelectron; 2017 Aug; 94():56-62. PubMed ID: 28257975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.