These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 33179730)

  • 1. Decoding Odor Mixtures in the Dog Brain: An Awake fMRI Study.
    Prichard A; Chhibber R; King J; Athanassiades K; Spivak M; Berns GS
    Chem Senses; 2020 Dec; 45(9):833-844. PubMed ID: 33179730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Configural and elemental coding of natural odor mixture components in the human brain.
    Howard JD; Gottfried JA
    Neuron; 2014 Nov; 84(4):857-69. PubMed ID: 25453843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding.
    Tantirigama ML; Huang HH; Bekkers JM
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2407-2412. PubMed ID: 28196887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scent of the familiar: an fMRI study of canine brain responses to familiar and unfamiliar human and dog odors.
    Berns GS; Brooks AM; Spivak M
    Behav Processes; 2015 Jan; 110():37-46. PubMed ID: 24607363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain processing of a configural vs elemental odor mixture in the newborn rabbit.
    Schneider NY; Datiche F; Wilson DA; Gigot V; Thomas-Danguin T; Ferreira G; Coureaud G
    Brain Struct Funct; 2016 Jun; 221(5):2527-39. PubMed ID: 25982221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population Coding in an Innately Relevant Olfactory Area.
    Iurilli G; Datta SR
    Neuron; 2017 Mar; 93(5):1180-1197.e7. PubMed ID: 28238549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral texture influences the neural processing of ortho- and retronasal odors in humans.
    Iannilli E; Bult JH; Roudnitzky N; Gerber J; de Wijk RA; Hummel T
    Brain Res; 2014 Oct; 1587():77-87. PubMed ID: 25175838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. History-Dependent Odor Processing in the Mouse Olfactory Bulb.
    Vinograd A; Livneh Y; Mizrahi A
    J Neurosci; 2017 Dec; 37(49):12018-12030. PubMed ID: 29109236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of olfactory information in the human brain using 7-Tesla functional magnetic resonance imaging.
    Donoshita Y; Choi US; Ban H; Kida I
    Neuroimage; 2021 Aug; 236():118212. PubMed ID: 34082117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical processing of configurally perceived odor mixtures.
    Wilson DA; Fleming G; Vervoordt SM; Coureaud G
    Brain Res; 2020 Feb; 1729():146617. PubMed ID: 31866364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coding odor identity and odor value in awake rodents.
    Nunez-Parra A; Li A; Restrepo D
    Prog Brain Res; 2014; 208():205-22. PubMed ID: 24767484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recurrent cortical circuits implement concentration-invariant odor coding.
    Bolding KA; Franks KM
    Science; 2018 Sep; 361(6407):. PubMed ID: 30213885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study.
    Gottfried JA; Deichmann R; Winston JS; Dolan RJ
    J Neurosci; 2002 Dec; 22(24):10819-28. PubMed ID: 12486175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging evolutionarily conserved neural networks: preferential activation of the olfactory system by food-related odor.
    Kulkarni P; Stolberg T; Sullivanjr JM; Ferris CF
    Behav Brain Res; 2012 Apr; 230(1):201-7. PubMed ID: 22343130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience-dependent evolution of odor mixture representations in piriform cortex.
    Berners-Lee A; Shtrahman E; Grimaud J; Murthy VN
    PLoS Biol; 2023 Apr; 21(4):e3002086. PubMed ID: 37098044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semantic context-dependent neural representations of odors in the human piriform cortex revealed by 7T MRI.
    Okumura T; Kida I; Yokoi A; Nakai T; Nishimoto S; Touhara K; Okamoto M
    Hum Brain Mapp; 2024 Apr; 45(6):e26681. PubMed ID: 38656060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encoding innately recognized odors via a generalized population code.
    Qiu Q; Wu Y; Ma L; Yu CR
    Curr Biol; 2021 May; 31(9):1813-1825.e4. PubMed ID: 33651991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Appetite-regulating hormones modulate odor perception and odor-evoked activity in hypothalamus and olfactory cortices.
    Zhao Y; Bhutani S; Kahnt T
    Chem Senses; 2023 Jan; 48():. PubMed ID: 37796827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing the engram: learning stabilizes odor representations in the olfactory network.
    Shakhawat AM; Gheidi A; Hou Q; Dhillon SK; Marrone DF; Harley CW; Yuan Q
    J Neurosci; 2014 Nov; 34(46):15394-401. PubMed ID: 25392506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.