These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33179912)

  • 1. Electrochemically Enabled Embedded Three-Dimensional Printing of Freestanding Gallium Wire-like Structures.
    Wang X; Liu X; Bi P; Zhang Y; Li L; Guo J; Zhang Y; Niu X; Wang Y; Hu L; Fan Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53966-53972. PubMed ID: 33179912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2D and 3D Structuring of Freestanding Metallic Wires Enabled by Room-Temperature Welding for Soft and Stretchable Electronics.
    Bhuyan P; Singh VK; Park S
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36644-36652. PubMed ID: 34310104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-assisted direct ink writing of planar and 3D metal architectures.
    Skylar-Scott MA; Gunasekaran S; Lewis JA
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6137-42. PubMed ID: 27185932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable and Soft Electronics using Liquid Metals.
    Dickey MD
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28417536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing of Conductive Hydrogel-Elastomer Hybrids for Stretchable Electronics.
    Zhu H; Hu X; Liu B; Chen Z; Qu S
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59243-59251. PubMed ID: 34870967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing the Rheological Properties of Liquid Metals To Shape Soft Electronic Conductors for Wearable Applications.
    Hirsch A; Dejace L; Michaud HO; Lacour SP
    Acc Chem Res; 2019 Mar; 52(3):534-544. PubMed ID: 30714364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications.
    Wang X; Liu J
    Micromachines (Basel); 2016 Nov; 7(12):. PubMed ID: 30404387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-Programmable Liquid Metal Fibers.
    Ma B; Zhang J; Chen G; Chen Y; Xu C; Lei L; Liu H
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omnidirectional Printing of Soft Elastomer for Liquid-State Stretchable Electronics.
    Wang J; Yang S; Ding P; Cao X; Zhang Y; Cao S; Zhang K; Kong S; Zhou Y; Wang X; Li D; Kong D
    ACS Appl Mater Interfaces; 2019 May; 11(20):18590-18598. PubMed ID: 31050403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing of Liquid Metal Embedded Elastomers for Soft Thermal and Electrical Materials.
    Won P; Valentine CS; Zadan M; Pan C; Vinciguerra M; Patel DK; Ko SH; Walker LM; Majidi C
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55028-55038. PubMed ID: 36458663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PμSL).
    Wang Y; Li X; Fan S; Feng X; Cao K; Ge Q; Gao L; Lu Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8901-8908. PubMed ID: 33587597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart Eutectic Gallium-Indium: From Properties to Applications.
    Zhao Z; Soni S; Lee T; Nijhuis CA; Xiang D
    Adv Mater; 2023 Jan; 35(1):e2203391. PubMed ID: 36036771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shaping a Soft Future: Patterning Liquid Metals.
    Ma J; Krisnadi F; Vong MH; Kong M; Awartani OM; Dickey MD
    Adv Mater; 2023 May; 35(19):e2205196. PubMed ID: 36044678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Electrodeposition of Liquid Metal from an Acetonitrile-Based Electrolyte for Highly Integrated Stretchable Electronics.
    Monnens W; Zhang B; Zhou Z; Snels L; Binnemans K; Molina-Lopez F; Fransaer J
    Adv Mater; 2023 Dec; 35(51):e2305967. PubMed ID: 37703420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimaterial Three-Dimensional Printing of Ultraviolet-Curable Ionic Conductive Elastomers with Diverse Polymers for Multifunctional Flexible Electronics.
    He X; Cheng J; Li Z; Ye H; Wei X; Li H; Wang R; Zhang YF; Yang HY; Guo C; Ge Q
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3455-3466. PubMed ID: 36538002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing.
    Kuang X; Chen K; Dunn CK; Wu J; Li VCF; Qi HJ
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7381-7388. PubMed ID: 29400445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Highly Stretchable and Permeable Liquid Metal Micromesh Conductor by Physical Deposition for Epidermal Electronics.
    Li Y; Wang S; Zhang J; Ma X; Cao S; Sun Y; Feng S; Fang T; Kong D
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13713-13721. PubMed ID: 35262322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofabrication for all-soft and high-density electronic devices based on liquid metal.
    Kim MG; Brown DK; Brand O
    Nat Commun; 2020 Feb; 11(1):1002. PubMed ID: 32081910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroprinted Electronics: Ultrathin Stretchable Ag-In-Ga E-Skin for Bioelectronics and Human-Machine Interaction.
    Lopes PA; Paisana H; De Almeida AT; Majidi C; Tavakoli M
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38760-38768. PubMed ID: 30338978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Elastic, Sensitive, Stretchable, and Skin-Inspired Conductive Sodium Alginate/Polyacrylamide/Gallium Composite Hydrogel with Toughness as a Flexible Strain Sensor.
    Cao Q; Shu Z; Zhang T; Ji W; Chen J; Wei Y
    Biomacromolecules; 2022 Jun; 23(6):2603-2613. PubMed ID: 35617102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.