These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 33179914)

  • 21. Catalytic C-H Amination Mediated by Dipyrrin Cobalt Imidos.
    Baek Y; Betley TA
    J Am Chem Soc; 2019 May; 141(19):7797-7806. PubMed ID: 31016975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and X-ray structures of cyclometalated iridium complexes including the hydrides.
    Wang C; Chen HY; Bacsa J; Catlow CR; Xiao J
    Dalton Trans; 2013 Jan; 42(4):935-40. PubMed ID: 23086557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal-catalysed azidation of tertiary C-H bonds suitable for late-stage functionalization.
    Sharma A; Hartwig JF
    Nature; 2015 Jan; 517(7536):600-4. PubMed ID: 25631448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Weakly Coordinated Cobaltacycles: Trapping Catalytically Competent Intermediates in Cp*Co
    Martínez de Salinas S; Sanjosé-Orduna J; Odena C; Barranco S; Benet-Buchholz J; Pérez-Temprano MH
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6239-6243. PubMed ID: 31917507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic C-H functionalization by metalloporphyrins: recent developments and future directions.
    Lu H; Zhang XP
    Chem Soc Rev; 2011 Apr; 40(4):1899-909. PubMed ID: 21088785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rh-Catalyzed Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds with Selectivity over β-Hydride Migration.
    DeAngelis A; Panish R; Fox JM
    Acc Chem Res; 2016 Jan; 49(1):115-27. PubMed ID: 26689221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrene Radical Intermediates in Catalytic Synthesis.
    Kuijpers PF; van der Vlugt JI; Schneider S; de Bruin B
    Chemistry; 2017 Oct; 23(56):13819-13829. PubMed ID: 28675476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of a Dimeric Base-Stabilized Cobaltosilylene Complex for Catalytic C-H Bond Functionalization and C-C Bond Formation.
    Khoo S; Cao J; Yang MC; Shan YL; Su MD; So CW
    Chemistry; 2018 Sep; 24(54):14329-14334. PubMed ID: 30102001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study.
    Chen HY; Di Tommaso D; Hogarth G; Catlow CR
    Dalton Trans; 2011 Jan; 40(2):402-12. PubMed ID: 21103602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A density functional theory study of the mechanism of isomerization of 2-aryl-2H-azirines to 2,3-disubstituted indoles by FeCl2 and Rh2(O2CCF3)4.
    Wu C; Li J; Yan B
    Dalton Trans; 2014 Apr; 43(14):5364-74. PubMed ID: 24518941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rh
    Mazumdar W; Jana N; Thurman BT; Wink DJ; Driver TG
    J Am Chem Soc; 2017 Apr; 139(14):5031-5034. PubMed ID: 28355068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [CuO](+) and [CuOH](2+) complexes: intermediates in oxidation catalysis?
    Gagnon N; Tolman WB
    Acc Chem Res; 2015 Jul; 48(7):2126-31. PubMed ID: 26075312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of catalytic cyclohydroamination by zirconium salicyloxazoline complexes.
    Allan LE; Clarkson GJ; Fox DJ; Gott AL; Scott P
    J Am Chem Soc; 2010 Nov; 132(43):15308-20. PubMed ID: 20939579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capturing Elusive Cobaltacycle Intermediates: A Real-Time Snapshot of the Cp*Co
    Sanjosé-Orduna J; Gallego D; Garcia-Roca A; Martin E; Benet-Buchholz J; Pérez-Temprano MH
    Angew Chem Int Ed Engl; 2017 Sep; 56(40):12137-12141. PubMed ID: 28586128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cu(II)-Mediated N-H and N-Alkyl Aryl Amination and Olefin Aziridination.
    Munnuri S; Anugu RR; Falck JR
    Org Lett; 2019 Mar; 21(6):1926-1929. PubMed ID: 30821980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Trends in Copper-Catalyzed C-H Amination Routes to Biologically Important Nitrogen Scaffolds.
    Subramanian P; Rudolf GC; Kaliappan KP
    Chem Asian J; 2016 Jan; 11(2):168-92. PubMed ID: 26353917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronic and Steric Tuning of a Prototypical Piano Stool Complex: Rh(III) Catalysis for C-H Functionalization.
    Piou T; Rovis T
    Acc Chem Res; 2018 Jan; 51(1):170-180. PubMed ID: 29272106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational mechanistic elucidation of the intramolecular aminoalkene hydroamination catalysed by iminoanilide alkaline-earth compounds.
    Tobisch S
    Chemistry; 2015 Apr; 21(18):6765-79. PubMed ID: 25801822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.