These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33179928)

  • 21. Crystal Engineering Enables Cobalt-Based Metal-Organic Frameworks as High-Performance Electrocatalysts for H
    Zhang C; Yuan L; Liu C; Li Z; Zou Y; Zhang X; Zhang Y; Zhang Z; Wei G; Yu C
    J Am Chem Soc; 2023 Apr; 145(14):7791-7799. PubMed ID: 36896469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Face-centered tetragonal (FCT) Fe and Co alloys of Pt as catalysts for the oxygen reduction reaction (ORR): A DFT study.
    Sharma S; Zeng C; Peterson AA
    J Chem Phys; 2019 Jan; 150(4):041704. PubMed ID: 30709250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene-covered transition metal halide molecules as efficient and durable electrocatalysts for oxygen reduction and evolution reactions.
    Zhang D; Zhang J; Gong L; Zhu Y; Zhang L; Xia Z
    Phys Chem Chem Phys; 2019 Oct; 21(41):23094-23101. PubMed ID: 31603158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Role of OOH Binding Site and Pt Surface Structure on ORR Activities.
    Jia Q; Caldwell K; Ziegelbauer JM; Kongkanand A; Wagner FT; Mukerjee S; Ramaker DE
    J Electrochem Soc; 2014; 161(14):F1323-F1329. PubMed ID: 26190857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasmall 2 D Co
    Zhao K; Liu S; Ye G; Wei X; Su Y; Zhu W; Zhou Z; He Z
    ChemSusChem; 2020 Mar; 13(6):1556-1567. PubMed ID: 31691474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface.
    Kattel S; Wang G
    J Chem Phys; 2014 Sep; 141(12):124713. PubMed ID: 25273467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Promoting Oxygen Reduction Reaction on Carbon-based Materials by Selective Hydrogen Bonding.
    Yang L; Zhang Y; Huang Y; Deng L; Luo Q; Li X; Jiang J
    ChemSusChem; 2023 Aug; 16(16):e202300082. PubMed ID: 37086395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulating the oxygen reduction activity of heteroatom-doped carbon catalysts
    Yang N; Li L; Li J; Ding W; Wei Z
    Chem Sci; 2018 Jul; 9(26):5795-5804. PubMed ID: 30079190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Activity Improvement of the TM
    Xiao B; Zhu H; Liu H; Jiang X; Jiang Q
    Front Chem; 2018; 6():351. PubMed ID: 30258838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bimetallic Covalent Organic Frameworks for Constructing Multifunctional Electrocatalyst.
    Wu D; Xu Q; Qian J; Li X; Sun Y
    Chemistry; 2019 Feb; 25(12):3105-3111. PubMed ID: 30537028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circumventing the scaling relationship on bimetallic monolayer electrocatalysts for selective CO
    Zhao Z; Lu G
    Chem Sci; 2022 Mar; 13(13):3880-3887. PubMed ID: 35432893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering of Nitrogen Coordinated Single Cobalt Atom Moieties for Oxygen Electroreduction.
    Sun W; Du L; Tan Q; Zhou J; Hu Y; Du C; Gao Y; Yin G
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41258-41266. PubMed ID: 31603640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving the Activity of M-N
    Svane KL; Reda M; Vegge T; Hansen HA
    ChemSusChem; 2019 Dec; 12(23):5133-5141. PubMed ID: 31603278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.
    Su HY; Gorlin Y; Man IC; Calle-Vallejo F; Nørskov JK; Jaramillo TF; Rossmeisl J
    Phys Chem Chem Phys; 2012 Oct; 14(40):14010-22. PubMed ID: 22990481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn-Air Batteries and Water Splitting.
    Zhang M; Dai Q; Zheng H; Chen M; Dai L
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29349841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal-Organic Framework System.
    Wang XL; Dong LZ; Qiao M; Tang YJ; Liu J; Li Y; Li SL; Su JX; Lan YQ
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9660-9664. PubMed ID: 29660248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transition-Metal-Containing Porphyrin Metal-Organic Frameworks as π-Backbonding Adsorbents for NO
    Shang S; Yang C; Wang C; Qin J; Li Y; Gu Q; Shang J
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19680-19683. PubMed ID: 32697412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential.
    Zheng F; Zhang Z; Xiang D; Li P; Du C; Zhuang Z; Li X; Chen W
    J Colloid Interface Sci; 2019 Nov; 555():541-547. PubMed ID: 31404838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrocatalytic oxygen reduction kinetics on Fe-center of nitrogen-doped graphene.
    Sun J; Fang YH; Liu ZP
    Phys Chem Chem Phys; 2014 Jul; 16(27):13733-40. PubMed ID: 24752409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bimetallic MOF-templated synthesis of alloy nanoparticle-embedded porous carbons for oxygen evolution and reduction reactions.
    Lionet Z; Nishijima S; Kim TH; Horiuchi Y; Lee SW; Matsuoka M
    Dalton Trans; 2019 Oct; 48(37):13953-13959. PubMed ID: 31490505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.