These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 33180490)
1. Importance of Equilibration Method and Sampling for Crabb E; France-Lanord A; Leverick G; Stephens R; Shao-Horn Y; Grossman JC J Chem Theory Comput; 2020 Dec; 16(12):7255-7266. PubMed ID: 33180490 [TBL] [Abstract][Full Text] [Related]
2. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations. Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974 [TBL] [Abstract][Full Text] [Related]
3. The DFT-ReaxFF Hybrid Reactive Dynamics Method with Application to the Reductive Decomposition Reaction of the TFSI and DOL Electrolyte at a Lithium-Metal Anode Surface. Liu Y; Yu P; Wu Y; Yang H; Xie M; Huai L; Goddard WA; Cheng T J Phys Chem Lett; 2021 Feb; 12(4):1300-1306. PubMed ID: 33502211 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of dissolution of a lithium salt in an electrolytic solvent in a lithium ion secondary battery: a direct ab initio molecular dynamics (AIMD) study. Tachikawa H Chemphyschem; 2014 Jun; 15(8):1604-10. PubMed ID: 24616076 [TBL] [Abstract][Full Text] [Related]
5. Structure and dynamics of the Li Rana R; Ali SM; Maity DK Phys Chem Chem Phys; 2023 Nov; 25(45):31382-31395. PubMed ID: 37961866 [TBL] [Abstract][Full Text] [Related]
6. Defining Condensed Phase Reactive Force Fields from ab Initio Molecular Dynamics Simulations: The Case of the Hydrated Excess Proton. Knight C; Maupin CM; Izvekov S; Voth GA J Chem Theory Comput; 2010 Oct; 6(10):3223-32. PubMed ID: 26616784 [TBL] [Abstract][Full Text] [Related]
7. Dynamical properties of hydrogen sulphide motion in its clathrate hydrate from ab initio and classical isobaric-isothermal molecular dynamics. English NJ; Tse JS J Phys Chem A; 2011 Jun; 115(23):6226-32. PubMed ID: 21391544 [TBL] [Abstract][Full Text] [Related]
8. On the Use of Accelerated Molecular Dynamics to Enhance Configurational Sampling in Ab Initio Simulations. Bucher D; Pierce LC; McCammon JA; Markwick PR J Chem Theory Comput; 2011 Apr; 7(4):890-897. PubMed ID: 21494425 [TBL] [Abstract][Full Text] [Related]
9. Comparison of classical and ab initio simulations of hydronium and aqueous proton transfer. Maurer M; Lazaridis T J Chem Phys; 2023 Oct; 159(13):. PubMed ID: 37795787 [TBL] [Abstract][Full Text] [Related]
10. A transferable classical force field to describe glyme based lithium solvate ionic liquids. Carrillo-Bohórquez O; Kuroda DG; Kumar R J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39092940 [TBL] [Abstract][Full Text] [Related]
11. Assessing OPLS-based force fields for investigating the characteristics of imidazolium-based dicationic ionic liquids: A comparative study with AIMD simulations and experimental findings. Memar ZO; Moosavi M J Chem Phys; 2023 Dec; 159(24):. PubMed ID: 38149743 [TBL] [Abstract][Full Text] [Related]
12. Quantum and Classical Molecular Dynamics of Ionic Liquid Electrolytes for Na/Li-based Batteries: Molecular Origins of the Conductivity Behavior. Vicent-Luna JM; Ortiz-Roldan JM; Hamad S; Tena-Zaera R; Calero S; Anta JA Chemphyschem; 2016 Aug; 17(16):2473-81. PubMed ID: 27171359 [TBL] [Abstract][Full Text] [Related]
13. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability. Haskins JB; Bauschlicher CW; Lawson JW J Phys Chem B; 2015 Nov; 119(46):14705-19. PubMed ID: 26505208 [TBL] [Abstract][Full Text] [Related]
14. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins. Liu J; Zhu T; Wang X; He X; Zhang JZ J Chem Theory Comput; 2015 Dec; 11(12):5897-905. PubMed ID: 26642993 [TBL] [Abstract][Full Text] [Related]
15. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations. Bylaska EJ; Weare JQ; Weare JH J Chem Phys; 2013 Aug; 139(7):074114. PubMed ID: 23968079 [TBL] [Abstract][Full Text] [Related]
16. A simple AIMD approach to derive atomic charges for condensed phase simulation of ionic liquids. Zhang Y; Maginn EJ J Phys Chem B; 2012 Aug; 116(33):10036-48. PubMed ID: 22852554 [TBL] [Abstract][Full Text] [Related]
17. Modeling High Concentration Bisalt-in-Sulfolane Electrolytes and the Observation of Ligand-Bridged Cation-Pair Complexes. Mukherji S; Brahma D; Balasubramanian S J Phys Chem B; 2024 Oct; 128(43):10675-10687. PubMed ID: 39413422 [TBL] [Abstract][Full Text] [Related]
18. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode. Camacho-Forero LE; Balbuena PB Phys Chem Chem Phys; 2017 Nov; 19(45):30861-30873. PubMed ID: 29135003 [TBL] [Abstract][Full Text] [Related]
19. Dynamic Monkey Bar Mechanism of Superionic Li-ion Transport in LiTaCl Lei M; Li B; Liu H; Jiang DE Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202315628. PubMed ID: 38079229 [TBL] [Abstract][Full Text] [Related]
20. Interactions between cyclic nucleotides and common cations: an ab initio molecular dynamics study. Cassone G; Kruse H; Sponer J Phys Chem Chem Phys; 2019 Apr; 21(15):8121-8132. PubMed ID: 30932112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]