These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33180673)

  • 1. Advanced oxidation mechanism of UV photolysis of electrochemically generated free bromine.
    Kishimoto N; Hara K
    Environ Technol; 2022 May; 43(12):1761-1769. PubMed ID: 33180673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of Bromine Radicals and Hydroxyl Radicals in the Degradation of Micropollutants by the UV/Bromine Process.
    Guo K; Zheng S; Zhang X; Zhao L; Ji S; Chen C; Wu Z; Wang D; Fang J
    Environ Sci Technol; 2020 May; 54(10):6415-6426. PubMed ID: 32320225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of synthetic dye containing textile raw wastewater effluent using UV/Chlorine/Br photolysis process followed by activated carbon adsorption.
    Ghanbari S; Fatehizadeh A; Khiadani M; Taheri E; Iqbal HMN
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39400-39409. PubMed ID: 35103940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps.
    Fang J; Zhao Q; Fan C; Shang C; Fu Y; Zhang X
    Chemosphere; 2017 Sep; 183():582-588. PubMed ID: 28570902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive Assessment of Reactive Bromine Species in Advanced Oxidation Processes: Differential Roles in Micropollutant Abatement in Bromide-Containing Water.
    Guo K; Zhang Y; Wu S; Qin W; Wang Y; Hua Z; Chen C; Fang J
    Environ Sci Technol; 2023 Dec; 57(48):20339-20348. PubMed ID: 37946521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of bisphenol A by UV/persulfate process in the presence of bromide: Role of reactive bromine.
    Cai A; Deng J; Ling X; Ye C; Sun H; Deng Y; Zhou S; Li X
    Water Res; 2022 May; 215():118288. PubMed ID: 35303562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the effects of bromide at fresh water levels on the radical chemistry in the UV/peroxydisulfate process.
    Wang A; Hua Z; Wu Z; Chen C; Hou S; Huang B; Wang Y; Wang D; Li X; Li C; Fang J
    Water Res; 2021 Jun; 197():117042. PubMed ID: 33784605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV/Chlorine Process: An Efficient Advanced Oxidation Process with Multiple Radicals and Functions in Water Treatment.
    Guo K; Wu Z; Chen C; Fang J
    Acc Chem Res; 2022 Feb; 55(3):286-297. PubMed ID: 35025201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of lipid regulators by the UV/chlorine process: Radical mechanisms, chlorine oxide radical (ClO
    Kong X; Wu Z; Ren Z; Guo K; Hou S; Hua Z; Li X; Fang J
    Water Res; 2018 Jun; 137():242-250. PubMed ID: 29550727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation pathways and kinetics of chloroacetonitriles by UV/persulfate in the presence of bromide.
    Li M; Shi Y; Sun S; Qian Y; An D
    Sci Total Environ; 2022 Aug; 834():155373. PubMed ID: 35460790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.
    Zhou S; Xia Y; Li T; Yao T; Shi Z; Zhu S; Gao N
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16448-55. PubMed ID: 27164884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of Thallium(I) Oxidation by Free Chlorine in Bromide-Containing Waters: Insights into the Reactivity with Bromine Species.
    Ma C; Cheng H; Huang R; Zou Y; He Q; Huangfu X; Ma J
    Environ Sci Technol; 2022 Jan; 56(2):1017-1027. PubMed ID: 34807594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the UV/chlorine and UV/H
    Guo K; Wu Z; Yan S; Yao B; Song W; Hua Z; Zhang X; Kong X; Li X; Fang J
    Water Res; 2018 Dec; 147():184-194. PubMed ID: 30312791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products.
    Kong X; Jiang J; Ma J; Yang Y; Liu W; Liu Y
    Water Res; 2016 Mar; 90():15-23. PubMed ID: 26724435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Multiple Role of Bromide Ion in PPCPs Degradation under UV/Chlorine Treatment.
    Cheng S; Zhang X; Yang X; Shang C; Song W; Fang J; Pan Y
    Environ Sci Technol; 2018 Feb; 52(4):1806-1816. PubMed ID: 29338220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of chloride on the 185 nm advanced oxidation process.
    Furatian L; Mohseni M
    Chemosphere; 2018 May; 199():263-268. PubMed ID: 29448193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic and kinetic understanding of micropollutant degradation by the UV/NH
    Chen C; Wu Z; Hua Z; Guo K; Zhou Y; Wang D; Xia B; Fang J
    Water Res; 2021 Oct; 204():117569. PubMed ID: 34461497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of diazepam in water during UV/chlorine and simulated sunlight/chlorine advanced oxidation processes.
    Yang B; Peng T; Cai WW; Ying GG
    Sci Total Environ; 2020 Dec; 746():141332. PubMed ID: 32758990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH and molar ratio of pollutant to oxidant on a photochemical advanced oxidation process using hypochlorite.
    Kishimoto N; Nishimura H
    Environ Technol; 2015; 36(19):2436-42. PubMed ID: 25809495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of X-ray contrast media by conventional and advanced oxidation processes during water treatment: Efficiency, oxidation intermediates, and formation of iodinated byproducts.
    Li J; Jiang J; Pang SY; Yang Y; Sun S; Wang L; Wang P
    Water Res; 2020 Oct; 185():116234. PubMed ID: 32736280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.