These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3318068)

  • 1. Analytical modelling of ultrasonically induced tissue heating.
    Lizzi FL; Ostromogilsky M
    Ultrasound Med Biol; 1987 Oct; 13(10):607-18. PubMed ID: 3318068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulations of ultrasonic heating for ocular therapy.
    Lizzi FL; Driller J; Kalisz A; Coleman DJ
    Acta Ophthalmol Suppl (1985); 1992; (204):40-5. PubMed ID: 1332392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound.
    Moros EG; Novak P; Straube WL; Kolluri P; Yablonskiy DA; Myerson RJ
    Phys Med Biol; 2004 Mar; 49(6):869-86. PubMed ID: 15104313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aperture size to therapeutic volume relation for a multielement ultrasound system: determination of applicator adequacy for superficial hyperthermia.
    Moros EG; Myerson RJ; Straube WL
    Med Phys; 1993; 20(5):1399-409. PubMed ID: 8289722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer model of ultrasonic hyperthermia and ablation for ocular tumors using B-mode data.
    Lizzi FL; Driller J; Lunzer B; Kalisz A; Coleman DJ
    Ultrasound Med Biol; 1992; 18(1):59-73. PubMed ID: 1566527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental verification of a model for predicting transient temperature distributions by focused ultrasound.
    Chin RB; Zagzebski JA; Madsen EL
    Phys Med Biol; 1991 Sep; 36(9):1153-64. PubMed ID: 1946600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-precision thermotherapy for small lesions.
    Lizzi FL
    Eur Urol; 1993; 23 Suppl 1():23-8. PubMed ID: 8513831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intradiscal thermal therapy using interstitial ultrasound: an in vivo investigation in ovine cervical spine.
    Nau WH; Diederich CJ; Shu R; Kinsey A; Bass E; Lotz J; Hu S; Simko J; Ferrier W; Sutton J; Attawia M; Pellegrino R
    Spine (Phila Pa 1976); 2007 Mar; 32(5):503-11. PubMed ID: 17334283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: a preliminary numerical study.
    Ho CS; Ju KC; Cheng TY; Chen YY; Lin WL
    Phys Med Biol; 2007 Aug; 52(15):4585-99. PubMed ID: 17634652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound heating in previously irradiated sites.
    Marmor JB; Hahn GM
    Int J Radiat Oncol Biol Phys; 1978; 4(11-12):1029-32. PubMed ID: 721647
    [No Abstract]   [Full Text] [Related]  

  • 13. [Ultrasonic hyperthermia of the animal brain].
    Gavrilov LR; Vykhodtseva NI; Konopatskaia II; Dmitriev VN; Elagin VA
    Med Radiol (Mosk); 1987 Jun; 32(6):49-54. PubMed ID: 3600225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat treatment modelling using strongly continuous semigroups.
    Malek A; Abbasi G
    Comput Biol Med; 2015 Jul; 62():65-75. PubMed ID: 25912988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of intracavitary ultrasonic applicators for hyperthermia: a design and experimental study.
    Diederich CJ; Hynynen K
    Med Phys; 1990; 17(4):626-34. PubMed ID: 2215407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.
    LeBrun A; Ma R; Zhu L
    J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonothrombolysis: experimental evidence.
    Daffertshofer M; Hennerici MG
    Front Neurol Neurosci; 2006; 21():140-149. PubMed ID: 17290133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles.
    Kaczmarek K; Hornowski T; Kubovčíková M; Timko M; Koralewski M; Józefczak A
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11554-11564. PubMed ID: 29560717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms.
    Huang J; Holt RG; Cleveland RO; Roy RA
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2451-8. PubMed ID: 15532675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards patient specific thermal modelling of the prostate.
    Van den Berg CA; Van de Kamer JB; De Leeuw AA; Jeukens CR; Raaymakers BW; van Vulpen M; Lagendijk JJ
    Phys Med Biol; 2006 Feb; 51(4):809-25. PubMed ID: 16467580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.