These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3318068)

  • 21. A reusable perfusion supporting tissue-mimicking material for ultrasound hyperthermia phantoms.
    Chin RB; Madsen EL; Zagzebski JA; Jadvar H; Wu XK; Frank GR
    Med Phys; 1990; 17(3):380-90. PubMed ID: 2385195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remote acoustic sensing as a safety mechanism during exposure of metal implants to alternating magnetic fields.
    Cheng B; Chatzinoff Y; Szczepanski D; Bing C; Shaikh S; Wyman O; Perry CE; Richardson JA; Burns DK; Evers BM; Greenberg DE; Chopra R
    PLoS One; 2018; 13(5):e0197380. PubMed ID: 29746579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An ultrasound cylindrical phased array for deep heating in the breast: theoretical design using heterogeneous models.
    Bakker JF; Paulides MM; Obdeijn IM; van Rhoon GC; van Dongen KW
    Phys Med Biol; 2009 May; 54(10):3201-15. PubMed ID: 19420416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Energy Localization in Hyperthermia Treatment Based on Hybrid Electromagnetic and Ultrasonic System: Proof of Concept with Numerical Simulations.
    Nizam-Uddin N; Elshafiey I
    Biomed Res Int; 2017; 2017():5787484. PubMed ID: 28840125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of ultrasonically induced hyperthermia on experimental tumors in the rabbit eye.
    Braakman R; van der Valk P; van Delft JL; de Wolff-Rouendaal D; Oosterhuis JA
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):835-44. PubMed ID: 2722440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interstitial ultrasound heating applicator for MR-guided thermal therapy.
    Chopra R; Luginbuhl C; Weymouth AJ; Foster FS; Bronskill MJ
    Phys Med Biol; 2001 Dec; 46(12):3133-45. PubMed ID: 11768496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A three-dimensional model and numerical simulation regarding thermoseed mediated magnetic induction therapy conformal hyperthermia.
    Wang H; Wu J; Zhuo Z; Tang J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S827-39. PubMed ID: 27198462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Treating spontaneous tumors in dogs and cats by ultrasound-induced hyperthermia.
    Marmor JB; Pounds D; Hahn N; Hahn GM
    Int J Radiat Oncol Biol Phys; 1978; 4(11-12):967-73. PubMed ID: 721659
    [No Abstract]   [Full Text] [Related]  

  • 30. [Acoustic method of determining the temperature of biological tissues during local heating].
    Dmitriev VN; Solontsova LV; Gavrilov LR
    Med Radiol (Mosk); 1987 Jan; 32(1):82-6. PubMed ID: 3807715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skin biothermomechanics for medical treatments.
    Xu F; Wen T; Lu TJ; Seffen KA
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):172-87. PubMed ID: 19627782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of physical parameters on high temperature ultrasound hyperthermia.
    Billard BE; Hynynen K; Roemer RB
    Ultrasound Med Biol; 1990; 16(4):409-20. PubMed ID: 2396329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Active MR-temperature feedback control of dynamic interstitial ultrasound therapy in brain: in vivo experiments and modeling in native and coagulated tissues.
    N'Djin WA; Burtnyk M; Lipsman N; Bronskill M; Kucharczyk W; Schwartz ML; Chopra R
    Med Phys; 2014 Sep; 41(9):093301. PubMed ID: 25186419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient cavitation in tissues during ultrasonically induced hyperthermia.
    Sommer FG; Pounds D
    Med Phys; 1982; 9(1):1-3. PubMed ID: 7078524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours.
    Singh AK; Moros EG; Novak P; Straube W; Zeug A; Locke JE; Myerson RJ
    Int J Hyperthermia; 2004 Feb; 20(1):32-44. PubMed ID: 14612312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study.
    Foiret J; Ferrara KW
    PLoS One; 2015; 10(8):e0134938. PubMed ID: 26244783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracavitary ultrasound phased arrays for prostate thermal therapies: MRI compatibility and in vivo testing.
    Hutchinson EB; Hynynen K
    Med Phys; 1998 Dec; 25(12):2392-9. PubMed ID: 9874833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Basic investigation on hyperthermia by low-frequency ultrasonic].
    Shiina T; Saito M
    Iyodenshi To Seitai Kogaku; 1989 Jun; 27(2):107-11. PubMed ID: 2810880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chronic histological effects of ultrasonic hyperthermia on normal feline brain tissue.
    Lyons BE; Obana WG; Borcich JK; Kleinman R; Singh D; Britt RH
    Radiat Res; 1986 May; 106(2):234-51. PubMed ID: 3704114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Split-focused ultrasound transducer with multidirectional heating for breast tumor thermal surgery.
    Cheng TY; Ju KC; Ho CS; Chen YY; Chang H; Lin WL
    Med Phys; 2008 Apr; 35(4):1387-97. PubMed ID: 18491533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.