These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Magnetoelectrics for Implantable Bioelectronics: Progress to Date. Alrashdan F; Yang K; Robinson JT Acc Chem Res; 2024 Oct; 57(20):2953-2962. PubMed ID: 39366673 [TBL] [Abstract][Full Text] [Related]
10. Characterization of simple wireless neurostimulators and sensors. Gulick DW; Towe BC Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3130-3. PubMed ID: 25570654 [TBL] [Abstract][Full Text] [Related]
11. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Piech DK; Johnson BC; Shen K; Ghanbari MM; Li KY; Neely RM; Kay JE; Carmena JM; Maharbiz MM; Muller R Nat Biomed Eng; 2020 Feb; 4(2):207-222. PubMed ID: 32076132 [TBL] [Abstract][Full Text] [Related]
12. A Miniature Batteryless Bioelectronic Implant Using One Magnetoelectric Transducer for Wireless Powering and PWM Backscatter Communication. Yu Z; Zou Y; Liao HC; Alrashdan F; Wen Z; Woods JE; Wang W; Robinson JT; Yang K IEEE Trans Biomed Circuits Syst; 2024 Sep; PP():. PubMed ID: 39321009 [TBL] [Abstract][Full Text] [Related]
13. Fully Integrated On-Chip Coil in 0.13 μm CMOS for Wireless Power Transfer Through Biological Media. Zargham M; Gulak PG IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):259-71. PubMed ID: 25099630 [TBL] [Abstract][Full Text] [Related]
15. A Miniaturized, Low-Frequency Magnetoelectric Wireless Power Transfer System for Powering Biomedical Implants. Mukherjee D; Rainu SK; Singh N; Mallick D IEEE Trans Biomed Circuits Syst; 2024 Apr; 18(2):438-450. PubMed ID: 37999967 [TBL] [Abstract][Full Text] [Related]
16. Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review. Barbruni GL; Ros PM; Demarchi D; Carrara S; Ghezzi D IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1160-1178. PubMed ID: 33201828 [TBL] [Abstract][Full Text] [Related]
17. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device. Jia Y; Mirbozorgi SA; Lee B; Khan W; Madi F; Inan OT; Weber A; Li W; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):608-618. PubMed ID: 31135371 [TBL] [Abstract][Full Text] [Related]
18. Circuit-Level Modeling and Simulation of Wireless Sensing and Energy Harvesting With Hybrid Magnetoelectric Antennas for Implantable Neural Devices. DAS D; Xu Z; Nasrollahpour M; Martos-Repath I; Zaeimbashi M; Khalifa A; Mittal A; Cash SS; Sun NX; Shrivastava A; Onabajo M IEEE Open J Circuits Syst; 2023; 4():139-155. PubMed ID: 37829556 [TBL] [Abstract][Full Text] [Related]
19. Enabling wireless powering and telemetry for peripheral nerve implants. Jegadeesan R; Nag S; Agarwal K; Thakor NV; Guo YX IEEE J Biomed Health Inform; 2015 May; 19(3):958-70. PubMed ID: 25910261 [TBL] [Abstract][Full Text] [Related]
20. A wirelessly programmable chip for multi-channel neural stimulation. Mai S; Wang Z; Zhang C; Wang Z Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6595-9. PubMed ID: 23367441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]