BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33180827)

  • 1. Hydrogen sulfide facilitates reprogramming and trans-differentiation in 3D dermal fibroblast.
    Ostrakhovitch EA; Akakura S; Tabibzadeh S
    PLoS One; 2020; 15(11):e0241685. PubMed ID: 33180827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-Mercaptopyruvate sulfurtransferase disruption in dermal fibroblasts facilitates adipogenic trans-differentiation.
    Ostrakhovitch EA; Akakura S; Sanokawa-Akakura R; Tabibzadeh S
    Exp Cell Res; 2019 Dec; 385(2):111683. PubMed ID: 31634482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Permeable
    Choi DH; Lee KE; Park J; Park YJ; Lee JY; Park YS
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenium Augments microRNA Directed Reprogramming of Fibroblasts to Cardiomyocytes via Nanog.
    Wang X; Hodgkinson CP; Lu K; Payne AJ; Pratt RE; Dzau VJ
    Sci Rep; 2016 Mar; 6():23017. PubMed ID: 26975336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical POU domain residues confer Oct4 uniqueness in somatic cell reprogramming.
    Jin W; Wang L; Zhu F; Tan W; Lin W; Chen D; Sun Q; Xia Z
    Sci Rep; 2016 Feb; 6():20818. PubMed ID: 26877091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diallyl trisulfide protects against high glucose-induced cardiac apoptosis by stimulating the production of cystathionine gamma-lyase-derived hydrogen sulfide.
    Tsai CY; Wen SY; Shibu MA; Yang YC; Peng H; Wang B; Wei YM; Chang HY; Lee CY; Huang CY; Kuo WW
    Int J Cardiol; 2015 Sep; 195():300-10. PubMed ID: 26056963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions.
    Rodríguez-Pizà I; Richaud-Patin Y; Vassena R; González F; Barrero MJ; Veiga A; Raya A; Izpisúa Belmonte JC
    Stem Cells; 2010 Jan; 28(1):36-44. PubMed ID: 19890879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diethylnitrosamine-induced expression of germline-specific genes and pluripotency factors, including vasa and oct4, in medaka somatic cells.
    Shen J; Yokota S; Yokoi H; Suzuki T
    Biochem Biophys Res Commun; 2016 Sep; 478(2):858-63. PubMed ID: 27514449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethyl-p-methoxycinnamate enhances oct4 expression and reinforces pluripotency through the NF-κB signaling pathway.
    Ai H; Qin H; Li J; Niu C; Song Z; Bao Y; Sun L; Zheng L; Li Y
    Biochem Pharmacol; 2020 Jul; 177():113984. PubMed ID: 32311348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance.
    Pillai VV; Kei TG; Reddy SE; Das M; Abratte C; Cheong SH; Selvaraj V
    Anim Sci J; 2019 Sep; 90(9):1149-1160. PubMed ID: 31322312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Stable OCT4
    Aalam SM; Manian KV; Bharathan SP; Mayuranathan T; Velayudhan SR
    Cell Reprogram; 2016 Nov; 18(6):367-368. PubMed ID: 27622636
    [No Abstract]   [Full Text] [Related]  

  • 12. Thioethers as markers of hydrogen sulfide production in homocystinurias.
    Kožich V; Krijt J; Sokolová J; Melenovská P; Ješina P; Vozdek R; Majtán T; Kraus JP
    Biochimie; 2016 Jul; 126():14-20. PubMed ID: 26791043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Induced Cardiospheres via Reprogramming of Skin Fibroblasts for Myocardial Regeneration.
    Xu JY; Lee YK; Ran X; Liao SY; Yang J; Au KW; Lai WH; Esteban MA; Tse HF
    Stem Cells; 2016 Nov; 34(11):2693-2706. PubMed ID: 27333945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted release of transcription factors for human cell reprogramming by ZEBRA cell-penetrating peptide.
    Caulier B; Berthoin L; Coradin H; Garban F; Dagher MC; Polack B; Toussaint B; Lenormand JL; Laurin D
    Int J Pharm; 2017 Aug; 529(1-2):65-74. PubMed ID: 28647433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sox2 and Klf4 as the Functional Core in Pluripotency Induction without Exogenous Oct4.
    An Z; Liu P; Zheng J; Si C; Li T; Chen Y; Ma T; Zhang MQ; Zhou Q; Ding S
    Cell Rep; 2019 Nov; 29(7):1986-2000.e8. PubMed ID: 31722212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanog, Oct4 and Tet1 interplay in establishing pluripotency.
    Olariu V; Lövkvist C; Sneppen K
    Sci Rep; 2016 May; 6():25438. PubMed ID: 27146218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts.
    Narayan S; Bryant G; Shah S; Berrozpe G; Ptashne M
    Cell Rep; 2017 Aug; 20(7):1585-1596. PubMed ID: 28813671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog.
    Moon JH; Yun W; Kim J; Hyeon S; Kang PJ; Park G; Kim A; Oh S; Whang KY; Kim DW; Yoon BS; You S
    Biochem Biophys Res Commun; 2013 Feb; 431(3):444-9. PubMed ID: 23333380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear reprogramming with a non-integrating human RNA virus.
    Driscoll CB; Tonne JM; El Khatib M; Cattaneo R; Ikeda Y; Devaux P
    Stem Cell Res Ther; 2015 Mar; 6(1):48. PubMed ID: 25889591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle and pluripotency: Convergence on octamer‑binding transcription factor 4 (Review).
    She S; Wei Q; Kang B; Wang YJ
    Mol Med Rep; 2017 Nov; 16(5):6459-6466. PubMed ID: 28901500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.