BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33180876)

  • 1. In-situ proliferation contributes to the accumulation of myeloid cells in the spleen during progressive experimental visceral leishmaniasis.
    Osorio EY; Medina-Colorado AA; Travi BL; Melby PC
    PLoS One; 2020; 15(11):e0242337. PubMed ID: 33180876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional Profiling in Experimental Visceral Leishmaniasis Reveals a Broad Splenic Inflammatory Environment that Conditions Macrophages toward a Disease-Promoting Phenotype.
    Kong F; Saldarriaga OA; Spratt H; Osorio EY; Travi BL; Luxon BA; Melby PC
    PLoS Pathog; 2017 Jan; 13(1):e1006165. PubMed ID: 28141856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splenic CD4+ T Cells in Progressive Visceral Leishmaniasis Show a Mixed Effector-Regulatory Phenotype and Impair Macrophage Effector Function through Inhibitory Receptor Expression.
    Medina-Colorado AA; Osorio EY; Saldarriaga OA; Travi BL; Kong F; Spratt H; Soong L; Melby PC
    PLoS One; 2017; 12(1):e0169496. PubMed ID: 28103263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth factor and Th2 cytokine signaling pathways converge at STAT6 to promote arginase expression in progressive experimental visceral leishmaniasis.
    Osorio EY; Travi BL; da Cruz AM; Saldarriaga OA; Medina AA; Melby PC
    PLoS Pathog; 2014 Jun; 10(6):e1004165. PubMed ID: 24967908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progressive visceral leishmaniasis is driven by dominant parasite-induced STAT6 activation and STAT6-dependent host arginase 1 expression.
    Osorio EY; Zhao W; Espitia C; Saldarriaga O; Hawel L; Byus CV; Travi BL; Melby PC
    PLoS Pathog; 2012 Jan; 8(1):e1002417. PubMed ID: 22275864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profiling of the spleen in progressive visceral leishmaniasis reveals mixed expression of type 1 and type 2 cytokine-responsive genes.
    Espitia CM; Saldarriaga OA; Travi BL; Osorio EY; Hernandez A; Band M; Patel MJ; Medina AA; Cappello M; Pekosz A; Melby PC
    BMC Immunol; 2014 Nov; 15():38. PubMed ID: 25424735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging visceral leishmaniasis in real time with golden hamster model: Monitoring the parasite burden and hamster transcripts to further characterize the immunological responses of the host.
    Rouault E; Lecoeur H; Meriem AB; Minoprio P; Goyard S; Lang T
    Parasitol Int; 2017 Feb; 66(1):933-939. PubMed ID: 27794505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The IL-33/ST2 axis is associated with human visceral leishmaniasis and suppresses Th1 responses in the livers of BALB/c mice infected with Leishmania donovani.
    Rostan O; Gangneux JP; Piquet-Pellorce C; Manuel C; McKenzie AN; Guiguen C; Samson M; Robert-Gangneux F
    mBio; 2013 Sep; 4(5):e00383-13. PubMed ID: 24045639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison Between Immuno-Clinicopathological Features of Experimental and Human Visceral Leishmaniasis by Leishmania donovani.
    Saini S; Dube A; Sahasrabuddhe AA; Thakur CP; Joshi S; Rawat K; Rai AK
    Acta Parasitol; 2020 Mar; 65(1):57-67. PubMed ID: 31578670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 15d-Prostaglandin J2 induced reactive oxygen species-mediated apoptosis during experimental visceral leishmaniasis.
    Vishwakarma P; Parmar N; Yadav PK; Chandrakar P; Kar S
    J Mol Med (Berl); 2016 Jun; 94(6):695-710. PubMed ID: 26830627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective inability of spleen antigen presenting cells from Leishmania donovani infected hamsters to mediate specific T cell proliferation to parasite antigens.
    Rodrigues Júnior V; Da Silva JS; Campos-Neto A
    Parasite Immunol; 1992 Jan; 14(1):49-58. PubMed ID: 1557230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypical Characterization of Spleen Remodeling in Murine Experimental Visceral Leishmaniasis.
    de Melo CVB; Hermida MD; Mesquita BR; Fontes JLM; Koning JJ; Solcà MDS; Benevides BB; Mota GBS; Freitas LAR; Mebius RE; Dos-Santos WLC
    Front Immunol; 2020; 11():653. PubMed ID: 32351510
    [No Abstract]   [Full Text] [Related]  

  • 13. Immunomodulatory role of Th17 pathway in experimental visceral leishmaniasis.
    Khatonier R; Ahmed G; Sarmah P; Narain K; Khan AM
    Immunobiology; 2021 Nov; 226(6):152148. PubMed ID: 34773853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IL-33/ST2 axis is involved in disease progression in the spleen during Leishmania donovani infection.
    Lamberet A; Rostan O; Dion S; Jan A; Guegan H; Manuel C; Samson M; Gangneux JP; Robert-Gangneux F
    Parasit Vectors; 2020 Jun; 13(1):320. PubMed ID: 32571430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compartment-specific remodeling of splenic micro-architecture during experimental visceral leishmaniasis.
    Yurdakul P; Dalton J; Beattie L; Brown N; Erguven S; Maroof A; Kaye PM
    Am J Pathol; 2011 Jul; 179(1):23-9. PubMed ID: 21703391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response.
    Melby PC; Chandrasekar B; Zhao W; Coe JE
    J Immunol; 2001 Feb; 166(3):1912-20. PubMed ID: 11160239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of CD11C+ splenic dendritic cell functions in murine visceral leishmaniasis: correlation with parasite replication in the spleen.
    Basu A; Chakrabarti G; Saha A; Bandyopadhyay S
    Immunology; 2000 Feb; 99(2):305-13. PubMed ID: 10692051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balancing immunity and pathology in visceral leishmaniasis.
    Stanley AC; Engwerda CR
    Immunol Cell Biol; 2007; 85(2):138-47. PubMed ID: 17146466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo immunomodulatory properties of octyl-β-D-galactofuranoside during Leishmania donovani infection.
    Guegan H; Ory K; Belaz S; Jan A; Dion S; Legentil L; Manuel C; Lemiègre L; Vives T; Ferrières V; Gangneux JP; Robert-Gangneux F
    Parasit Vectors; 2019 Dec; 12(1):600. PubMed ID: 31870416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay Between Sialic Acids, Siglec-E, and Neu1 Regulates MyD88- and TRIF-Dependent Pathways for TLR4-Activation During
    Karmakar J; Mandal C
    Front Immunol; 2021; 12():626110. PubMed ID: 33763070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.