BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 33181017)

  • 1. Conformal Coating of Orthopedic Plates with X-ray Scintillators and pH Indicators for X-ray Excited Luminescence Chemical Imaging through Tissue.
    Uzair U; Johnson C; Beladi-Behbahani S; Rajamanthrilage AC; Raval YS; Benza D; Ranasinghe M; Schober G; Tzeng TJ; Anker JN
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52343-52353. PubMed ID: 33181017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasively Imaging pH at the Surface of Implanted Orthopedic Devices with X-ray Excited Luminescence Chemical Imaging.
    Uzair U; Benza D; Behrend CJ; Anker JN
    ACS Sens; 2019 Sep; 4(9):2367-2374. PubMed ID: 31487166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Spatial Resolution Chemical Imaging of Implant-Associated Infections with X-ray Excited Luminescence Chemical Imaging Through Tissue.
    Rajamanthrilage AC; Levon E; Uzair U; Taylor C; Tzeng TR; Anker JN
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36282689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray excited luminescent chemical imaging (XELCI) for non-invasive imaging of implant infections.
    Benza D; Uzair U; Raval Y; Tzeng TJ; Behrend CJ; Anker JN
    Proc SPIE Int Soc Opt Eng; 2017; 10081():. PubMed ID: 29230078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-Ray Excited Luminescence Chemical Imaging of Bacterial Growth on Surfaces Implanted in Tissue.
    Wang F; Raval Y; Tzeng TR; Anker JN
    Adv Healthc Mater; 2015 Apr; 4(6):903-10. PubMed ID: 25611007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution chemical imaging through tissue with an X-ray scintillator sensor.
    Chen H; Patrick AL; Yang Z; VanDerveer DG; Anker JN
    Anal Chem; 2011 Jul; 83(13):5045-9. PubMed ID: 21619005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the soft tissue interface at titanium implants with different surface treatments: experimental study on rabbits.
    Ungersböck A; Pohler O; Perren SM
    Biomed Mater Eng; 1994; 4(4):317-25. PubMed ID: 7950879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An implanted pH sensor read using radiography.
    Arifuzzaman M; Millhouse PW; Raval Y; Pace TB; Behrend CJ; Beladi Behbahani S; DesJardins JD; Tzeng TJ; Anker JN
    Analyst; 2019 Apr; 144(9):2984-2993. PubMed ID: 30888348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zirconium Nitride Coating Reduced Staphylococcus epidermidis Biofilm Formation on Orthopaedic Implant Surfaces: An In Vitro Study.
    Pilz M; Staats K; Tobudic S; Assadian O; Presterl E; Windhager R; Holinka J
    Clin Orthop Relat Res; 2019 Feb; 477(2):461-466. PubMed ID: 30418277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical imaging in tissue with X-ray excited luminescent sensors.
    Chen H; Longfield DE; Varahagiri VS; Nguyen KT; Patrick AL; Qian H; VanDerveer DG; Anker JN
    Analyst; 2011 Sep; 136(17):3438-45. PubMed ID: 21695291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.
    Schildhauer TA; Robie B; Muhr G; Köller M
    J Orthop Trauma; 2006 Jul; 20(7):476-84. PubMed ID: 16891939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grafting of cross-linked hydrogel networks to titanium surfaces.
    Muir BV; Myung D; Knoll W; Frank CW
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):958-66. PubMed ID: 24364560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of thermal cycling on Staphylococcus aureus biofilm growth on stainless steel and titanium orthopaedic plates.
    Akens MK; Chien C; Katchky RN; Kreder HJ; Finkelstein J; Whyne CM
    BMC Musculoskelet Disord; 2018 Jul; 19(1):260. PubMed ID: 30049271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chlorhexidine-releasing epoxy-based coating on titanium implants prevents Staphylococcus aureus experimental biomaterial-associated infection.
    Riool M; Dirks AJ; Jaspers V; de Boer L; Loontjens TJ; van der Loos CM; Florquin S; Apachitei I; Rijk LN; Keul HA; Zaat SA
    Eur Cell Mater; 2017 Feb; 33():143-157. PubMed ID: 28197990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apatite layer-coated titanium for use as bone bonding implants.
    Yan WQ; Nakamura T; Kawanabe K; Nishigochi S; Oka M; Kokubo T
    Biomaterials; 1997 Sep; 18(17):1185-90. PubMed ID: 9259516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Antibiotic-loaded Point-of-care Implant Coating Inhibits Biofilm.
    Jennings JA; Carpenter DP; Troxel KS; Beenken KE; Smeltzer MS; Courtney HS; Haggard WO
    Clin Orthop Relat Res; 2015 Jul; 473(7):2270-82. PubMed ID: 25604874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Properties and Concentrations of Poly(ethylene glycol) in Hydrogels and Brushes Direct the Surface Transport of Staphylococcus aureus.
    Kolewe KW; Kalasin S; Shave M; Schiffman JD; Santore MM
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):320-330. PubMed ID: 30595023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping Bacterial Biofilm on Features of Orthopedic Implants In Vitro.
    Moore K; Gupta N; Gupta TT; Patel K; Brooks JR; Sullivan A; Litsky AS; Stoodley P
    Microorganisms; 2022 Mar; 10(3):. PubMed ID: 35336161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-dense polymer brush coating reduces Staphylococcus epidermidis biofilms on medical implants and improves antibiotic treatment outcome.
    Skovdal SM; Jørgensen NP; Petersen E; Jensen-Fangel S; Ogaki R; Zeng G; Johansen MI; Wang M; Rohde H; Meyer RL
    Acta Biomater; 2018 Aug; 76():46-55. PubMed ID: 30078425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels.
    Shin H; Quinten Ruhé P; Mikos AG; Jansen JA
    Biomaterials; 2003 Aug; 24(19):3201-11. PubMed ID: 12763447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.