These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 33181360)
1. Co-inspired hydroxyapatite-based scaffolds for vascularized bone regeneration. Feng C; Xue J; Yu X; Zhai D; Lin R; Zhang M; Xia L; Wang X; Yao Q; Chang J; Wu C Acta Biomater; 2021 Jan; 119():419-431. PubMed ID: 33181360 [TBL] [Abstract][Full Text] [Related]
2. Nacre-mimetic cerium-doped nano-hydroxyapatite/chitosan layered composite scaffolds regulate bone regeneration via OPG/RANKL signaling pathway. Liu XL; Zhang CJ; Shi JJ; Ke QF; Ge YW; Zhu ZA; Guo YP J Nanobiotechnology; 2023 Aug; 21(1):259. PubMed ID: 37550715 [TBL] [Abstract][Full Text] [Related]
3. Nacre-mimetic hydroxyapatite/chitosan/gelatin layered scaffolds modifying substance P for subchondral bone regeneration. Chen D; Liu P; Li M; Zhang C; Gao Y; Guo Y Carbohydr Polym; 2022 Sep; 291():119575. PubMed ID: 35698339 [TBL] [Abstract][Full Text] [Related]
4. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Mou P; Peng H; Zhou L; Li L; Li H; Huang Q Int J Nanomedicine; 2019; 14():3331-3343. PubMed ID: 31123401 [No Abstract] [Full Text] [Related]
5. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of porous hydroxyapatite/β-cyclodextrin-based polyurethane composite scaffolds for bone tissue engineering. Du J; Gan S; Bian Q; Fu D; Wei Y; Wang K; Lin Q; Chen W; Huang D J Biomater Appl; 2018 Sep; 33(3):402-409. PubMed ID: 30223737 [TBL] [Abstract][Full Text] [Related]
7. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
8. Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect. Volkov AV; Muraev AA; Zharkova II; Voinova VV; Akoulina EA; Zhuikov VA; Khaydapova DD; Chesnokova DV; Menshikh KA; Dudun AA; Makhina TK; Bonartseva GA; Asfarov TF; Stamboliev IA; Gazhva YV; Ryabova VM; Zlatev LH; Ivanov SY; Shaitan KV; Bonartsev AP Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110991. PubMed ID: 32994018 [TBL] [Abstract][Full Text] [Related]
9. In vivo evaluation of porous lithium-doped hydroxyapatite scaffolds for the treatment of bone defect. Luo Y; Li D; Zhao J; Yang Z; Kang P Biomed Mater Eng; 2018; 29(6):699-721. PubMed ID: 30282329 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic porous scaffolds containing decellularized small intestinal submucosa and Sr Cui W; Yang L; Ullah I; Yu K; Zhao Z; Gao X; Liu T; Liu M; Li P; Wang J; Guo X Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35026740 [TBL] [Abstract][Full Text] [Related]
11. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734 [TBL] [Abstract][Full Text] [Related]
12. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study. Fayyazbakhsh F; Solati-Hashjin M; Keshtkar A; Shokrgozar MA; Dehghan MM; Larijani B Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():701-714. PubMed ID: 28482581 [TBL] [Abstract][Full Text] [Related]
13. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134 [TBL] [Abstract][Full Text] [Related]
14. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic Nacre-like Hydroxyapatite/Polymer Composites for Bone Implants. Tabrizian P; Sun H; Jargalsaikhan U; Sui T; Davis S; Su B J Funct Biomater; 2023 Jul; 14(8):. PubMed ID: 37623638 [TBL] [Abstract][Full Text] [Related]
17. Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: In vitro and in vivo study. Daugela P; Pranskunas M; Juodzbalys G; Liesiene J; Baniukaitiene O; Afonso A; Sousa Gomes P J Tissue Eng Regen Med; 2018 May; 12(5):1195-1208. PubMed ID: 29498222 [TBL] [Abstract][Full Text] [Related]
18. 3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration. Sun X; Jiao X; Yang X; Ma J; Wang T; Jin W; Li W; Yang H; Mao Y; Gan Y; Zhou X; Li T; Li S; Chen X; Wang J Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35417902 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Chen S; Shi Y; Zhang X; Ma J Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable 3D printed HA/CMCS/PDA scaffold for repairing lacunar bone defect. Chen T; Zou Q; Du C; Wang C; Li Y; Fu B Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111148. PubMed ID: 32806300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]