BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33181504)

  • 1. Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation.
    Saturnino GB; Madsen KH; Thielscher A
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33181504
    [No Abstract]   [Full Text] [Related]  

  • 2. Optimized multi-electrode stimulation increases focality and intensity at target.
    Dmochowski JP; Datta A; Bikson M; Su Y; Parra LC
    J Neural Eng; 2011 Aug; 8(4):046011. PubMed ID: 21659696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accessibility of cortical regions to focal TES: Dependence on spatial position, safety, and practical constraints.
    Saturnino GB; Siebner HR; Thielscher A; Madsen KH
    Neuroimage; 2019 Dec; 203():116183. PubMed ID: 31525498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addressing transcranial electrical stimulation variability through prospective individualized dosing of electric field strength in 300 participants across two samples: the 2-SPED approach.
    Van Hoornweder S; A Caulfield K; Nitsche M; Thielscher A; L J Meesen R
    J Neural Eng; 2022 Oct; 19(5):. PubMed ID: 36240729
    [No Abstract]   [Full Text] [Related]  

  • 5. Multi-objective optimization via evolutionary algorithm (MOVEA) for high-definition transcranial electrical stimulation of the human brain.
    Wang M; Lou K; Liu Z; Wei P; Liu Q
    Neuroimage; 2023 Oct; 280():120331. PubMed ID: 37604295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive stimulation with temporal interference: optimization of the electric field deep in the brain with the use of a genetic algorithm.
    Stoupis D; Samaras T
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35970146
    [No Abstract]   [Full Text] [Related]  

  • 7. A simple method for EEG guided transcranial electrical stimulation without models.
    Cancelli A; Cottone C; Tecchio F; Truong DQ; Dmochowski J; Bikson M
    J Neural Eng; 2016 Jun; 13(3):036022. PubMed ID: 27172063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcranial Electrical Stimulation generates electric fields in deep human brain structures.
    Louviot S; Tyvaert L; Maillard LG; Colnat-Coulbois S; Dmochowski J; Koessler L
    Brain Stimul; 2022; 15(1):1-12. PubMed ID: 34742994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of optimal injection current pattern for multichannel transcranial electrical stimulation without individual MRI using multiple head models.
    Lee S; Park J; Lee C; Ahn J; Ryu J; Lee SH; Im CH
    Comput Methods Programs Biomed; 2024 Jan; 243():107878. PubMed ID: 37890288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Operational Approach for Optimizing Transcranial Direct Current Stimulation.
    Xie X; Wang M; Qin L; Pan Y; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).
    Alam M; Truong DQ; Khadka N; Bikson M
    Phys Med Biol; 2016 Jun; 61(12):4506-21. PubMed ID: 27223853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields.
    Ruffini G; Fox MD; Ripolles O; Miranda PC; Pascual-Leone A
    Neuroimage; 2014 Apr; 89():216-25. PubMed ID: 24345389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cost of focality in TDCS: Interindividual variability in electric fields.
    Mikkonen M; Laakso I; Tanaka S; Hirata A
    Brain Stimul; 2020; 13(1):117-124. PubMed ID: 31606449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can transcranial electric stimulation with multiple electrodes reach deep targets?
    Huang Y; Parra LC
    Brain Stimul; 2019; 12(1):30-40. PubMed ID: 30297323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On comparing in vivo intracranial recordings in non-human primates to predictions of optimized transcranial electrical stimulation.
    Datta A; Krause MR; Pilly PK; Choe J; Zanos TP; Thomas C; Pack CC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1774-1777. PubMed ID: 28268671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS.
    Edwards D; Cortes M; Datta A; Minhas P; Wassermann EM; Bikson M
    Neuroimage; 2013 Jul; 74():266-75. PubMed ID: 23370061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS).
    Guler S; Dannhauer M; Erem B; Macleod R; Tucker D; Turovets S; Luu P; Erdogmus D; Brooks DH
    J Neural Eng; 2016 Jun; 13(3):036020. PubMed ID: 27152752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unification of optimal targeting methods in transcranial electrical stimulation.
    Fernández-Corazza M; Turovets S; Muravchik CH
    Neuroimage; 2020 Apr; 209():116403. PubMed ID: 31862525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation.
    Antonenko D; Grittner U; Saturnino G; Nierhaus T; Thielscher A; Flöel A
    Neuroimage; 2021 Jan; 224():117413. PubMed ID: 33011418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interindividual differences in posterior fossa morphometry affect cerebellar tDCS-induced electric field strength.
    Maas RPPWM; Faber J; ; van de Warrenburg BPC; Schutter DJLG
    Clin Neurophysiol; 2023 Sep; 153():152-165. PubMed ID: 37499446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.