These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33182003)

  • 1. Identification and quantification of chloramines, bromamines and bromochloramine by Membrane Introduction Mass Spectrometry (MIMS).
    Hu W; Lauritsen FR; Allard S
    Sci Total Environ; 2021 Jan; 751():142303. PubMed ID: 33182003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of brominated amines on monochloramine stability during in-line and pre-formed chloramination assessed by kinetic modelling.
    Allard S; Cadee K; Tung R; Croué JP
    Sci Total Environ; 2018 Mar; 618():1431-1439. PubMed ID: 29122349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method Development for Quantification of Bromochloramine Using Membrane Introduction Mass Spectrometry.
    Allard S; Hu W; Le Menn JB; Cadee K; Gallard H; Croué JP
    Environ Sci Technol; 2018 Jul; 52(14):7805-7812. PubMed ID: 29902372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent Reactivity of Bromine in Bromochloramine Depends on Synthesis Method: Implicating Bromine Chloride and Molecular Bromine as Important Bromine Species.
    Brodfuehrer SH; Goodman JB; Wahman DG; Speitel GE; Katz LE
    J Environ Eng (New York); 2022 Jul; 148(12):. PubMed ID: 36337256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of N-nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study.
    Liu YD; Zhong R
    J Hazard Mater; 2017 Jan; 321():362-370. PubMed ID: 27643481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brominated trihalamines in chlorinated seawaters: Quantification of tribromamine and identification of bromochloramines by Membrane Introduction Mass Spectrometry.
    Mensah AT; Allard S; Berne F; Soreau S; Gallard H
    Sci Total Environ; 2022 Jul; 830():154667. PubMed ID: 35314219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of copper oxide on monochloramine decomposition in bromide-containing waters.
    Hu W; Croué JP; Allard S
    Sci Total Environ; 2021 Apr; 765():142519. PubMed ID: 33077219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into mixed chlorine/chloramines conversion and associated water quality variability in drinking water distribution systems.
    Pan R; Zhang TY; Zheng ZX; Ai J; Ye T; Zhao HX; Hu CY; Tang YL; Fan JJ; Geng B; Xu B
    Sci Total Environ; 2023 Jul; 880():163297. PubMed ID: 37028653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanogen bromide formation from the reactions of monobromamine and dibromamine with cyanide ion.
    Lei H; Minear RA; Mariñas BJ
    Environ Sci Technol; 2006 Apr; 40(8):2559-64. PubMed ID: 16683592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV Photolysis of Mono- and Dichloramine Using UV-LEDs as Radiation Sources: Photodecay Rates and Radical Concentrations.
    Yin R; Blatchley ER; Shang C
    Environ Sci Technol; 2020 Jul; 54(13):8420-8429. PubMed ID: 32501682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated control of CX
    Zhang A; Wang F; Chu W; Yang X; Pan Y; Zhu H
    Water Res; 2019 Sep; 160():304-312. PubMed ID: 31154128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the generation of toxic products during chloramination of carbamazepine: Kinetics, transformation pathway and toxicity.
    Han Y; Ma M; Oda Y; Rao K; Wang Z; Yang R; Liu Y
    Sci Total Environ; 2019 Aug; 679():221-228. PubMed ID: 31082595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibria and Speciation of Chloramines, Bromamines, and Bromochloramines in Water.
    Trogolo D; Arey JS
    Environ Sci Technol; 2017 Jan; 51(1):128-140. PubMed ID: 27983824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Updated Reaction Pathway for Dichloramine Decomposition: Formation of Reactive Nitrogen Species and
    Pham HT; Wahman DG; Fairey JL
    Environ Sci Technol; 2021 Feb; 55(3):1740-1749. PubMed ID: 33448793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of colorimetric and membrane introduction mass spectrometry techniques for chloramine analysis.
    Lee W; Westerhoff P; Yang X; Shang C
    Water Res; 2007 Jul; 41(14):3097-102. PubMed ID: 17544050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and mechanistic investigations of the decomposition of bromamines in the presence of Cu(II).
    Hu W; Lee Y; Allard S
    Water Res; 2021 Dec; 207():117791. PubMed ID: 34740164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.
    Wahman DG; Speitel GE; Machavaram MV
    Water Res; 2014 Sep; 60():218-227. PubMed ID: 24862953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monochloramine Loss Mechanisms in Tap Water.
    Zhang Q; Davies EGR; Bolton J; Liu Y
    Water Environ Res; 2017 Nov; 89(11):1999-2005. PubMed ID: 28357978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV Photolysis of Chloramine and Persulfate for 1,4-Dioxane Removal in Reverse-Osmosis Permeate for Potable Water Reuse.
    Li W; Patton S; Gleason JM; Mezyk SP; Ishida KP; Liu H
    Environ Sci Technol; 2018 Jun; 52(11):6417-6425. PubMed ID: 29653056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated levels of chloramines and chlorine detected near an indoor sports complex.
    Angelucci AA; Crilley LR; Richardson R; Valkenburg TSE; Monks PS; Roberts JM; Sommariva R; VandenBoer TC
    Environ Sci Process Impacts; 2023 Feb; 25(2):304-313. PubMed ID: 36484250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.