BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33182090)

  • 1. The remediation of sulfonamides from the environment by Pleurotus eryngii mycelium. Efficiency, products and mechanisms of mycodegradation.
    Baran W; Adamek E; Włodarczyk A; Lazur J; Opoka W; Muszyńska B
    Chemosphere; 2021 Jan; 262():128026. PubMed ID: 33182090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin.
    Wu M; Xu Y; Ding W; Li Y; Xu H
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7249-61. PubMed ID: 27102128
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Purnomo AS; Maulianawati D; Kamei I
    J Microbiol Biotechnol; 2019 Sep; 29(9):1424-1433. PubMed ID: 31474097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Submerged cultivation of mycelium with high ergothioneine content from the culinary-medicinal king oyster mushroom Pleurotus eryngii (higher Basidiomycetes) and its composition.
    Liang CH; Huang LY; Ho KJ; Lin SY; Mau JL
    Int J Med Mushrooms; 2013; 15(2):153-64. PubMed ID: 23557367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenium and Zinc Biofortification of
    Zięba P; Kała K; Włodarczyk A; Szewczyk A; Kunicki E; Sękara A; Muszyńska B
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32079328
    [No Abstract]   [Full Text] [Related]  

  • 6. Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii).
    Branà MT; Cimmarusti MT; Haidukowski M; Logrieco AF; Altomare C
    PLoS One; 2017; 12(8):e0182574. PubMed ID: 28771640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron bioaccumulation in mycelium of Pleurotus ostreatus.
    Almeida SM; Umeo SH; Marcante RC; Yokota ME; Valle JS; Dragunski DC; Colauto NB; Linde GA
    Braz J Microbiol; 2015 Mar; 46(1):195-200. PubMed ID: 26221108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid detection method of Pleurotus eryngii mycelium based on near infrared spectral characteristics.
    Yang C; Ma X; Guan H; Fan B
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120919. PubMed ID: 35091183
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Włodarczyk A; Krakowska A; Sułkowska-Ziaja K; Suchanek M; Zięba P; Opoka W; Muszyńska B
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33396513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of naphthalene metabolism by white rot fungus Pleurotus eryngii.
    Hadibarata T; Teh ZC; Rubiyatno ; Zubir MM; Khudhair AB; Yusoff AR; Salim MR; Hidayat T
    Bioprocess Biosyst Eng; 2013 Oct; 36(10):1455-61. PubMed ID: 23334282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation.
    Salmones D; Mata G; Waliszewski KN
    Bioresour Technol; 2005 Mar; 96(5):537-44. PubMed ID: 15501659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction of Ergothioneine from Pleurotus eryngii and P. citrinopileatus (Agaricomycetes) and Preparation of Its Product.
    Yen MT; Chang YH; Huang SJ; Cheng MC; Mau JL
    Int J Med Mushrooms; 2018; 20(4):381-392. PubMed ID: 29953398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus.
    Ntougias S; Baldrian P; Ehaliotis C; Nerud F; Antoniou T; Merhautová V; Zervakis GI
    Chemosphere; 2012 Jul; 88(5):620-6. PubMed ID: 22480939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of malachite green by Pleurotus eryngii: a study on decolorization, mechanism, toxicity, and enzyme.
    Lv G; Zhang Z; Shen Y; Wang M
    Environ Sci Pollut Res Int; 2024 Mar; 31(13):20084-20092. PubMed ID: 38372929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of emerging contaminants using spent mushroom compost.
    Chang BV; Fan SN; Tsai YC; Chung YL; Tu PX; Yang CW
    Sci Total Environ; 2018 Sep; 634():922-933. PubMed ID: 29660886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of extracellular glucan production from Pleurotus eryngii and its impact on angiogenesis.
    Shenbhagaraman R; Jagadish LK; Premalatha K; Kaviyarasan V
    Int J Biol Macromol; 2012 May; 50(4):957-64. PubMed ID: 22361455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fates of nickel and fluoranthene during the bioremediation by Pleurotus eryngii in three different soils.
    Tang X; Dong S; Shi W; Gao N; Zuo L; Xu H
    J Basic Microbiol; 2016 Nov; 56(11):1194-1202. PubMed ID: 27477618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of volatile compound production in fruit body and in mycelium of Pleurotus ostreatus identified by submerged and solid-state cultures.
    Kabbaj W; Breheret S; Guimberteau J; Talou T; Olivier JM; Bensoussan M; Sobal M; Roussos S
    Appl Biochem Biotechnol; 2002; 102-103(1-6):463-9. PubMed ID: 12396146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of zinc bioaccumulation and biomass yield in the mycelia and fruiting bodies of Pleurotus florida cultured on liquid media.
    Poursaeid N; Azadbakht A; Balali GR
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3387-96. PubMed ID: 25686560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of radiocesium in mycelium and its translocation to fruitbodies of a saprophytic macromycete.
    Bazała MA; Gołda K; Bystrzejewska-Piotrowska G
    J Environ Radioact; 2008 Jul; 99(7):1200-2. PubMed ID: 18313816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.