These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 33182347)
1. Effect of a Heating System Using a Ground Source Geothermal Heat Pump on Production Performance, Energy-Saving and Housing Environment of Pigs. Mun HS; Dilawar MA; Jeong MG; Rathnayake D; Won JS; Park KW; Lee SR; Ryu SB; Yang CJ Animals (Basel); 2020 Nov; 10(11):. PubMed ID: 33182347 [TBL] [Abstract][Full Text] [Related]
2. Effect of heating system using a geothermal heat pump on the production performance and housing environment of broiler chickens. Choi HC; Salim HM; Akter N; Na JC; Kang HK; Kim MJ; Kim DW; Bang HT; Chae HS; Suh OS Poult Sci; 2012 Feb; 91(2):275-81. PubMed ID: 22252338 [TBL] [Abstract][Full Text] [Related]
3. Effects of a Combined Geothermal and Solar Heating System as a Renewable Energy Source in a Pig House and Estimation of Energy Consumption Using Artificial Intelligence-Based Prediction Model. Mun HS; Dilawar MA; Mahfuz S; Ampode KMB; Chem V; Kim YH; Moon JP; Yang CJ Animals (Basel); 2022 Oct; 12(20):. PubMed ID: 36290245 [TBL] [Abstract][Full Text] [Related]
4. Energo- and exergo-technical assessment of ground-source heat pump systems for geothermal energy production from underground mines. Amiri L; Madadian E; Hassani FP Environ Technol; 2019 Nov; 40(27):3534-3546. PubMed ID: 29806558 [TBL] [Abstract][Full Text] [Related]
5. Mitigation of CO2 emissions from the EU-15 building stock: beyond the EU Directive on the Energy Performance of Buildings. Petersdorff C; Boermans T; Harnisch J Environ Sci Pollut Res Int; 2006 Sep; 13(5):350-8. PubMed ID: 17067030 [TBL] [Abstract][Full Text] [Related]
6. An integrated framework of ground source heat pump utilisation for high-performance buildings. Li HX; Okolo DE; Tabadkani A; Arnel T; Zheng D; Shi L Sci Rep; 2023 Jan; 13(1):371. PubMed ID: 36611049 [TBL] [Abstract][Full Text] [Related]
8. Potential for heat production by retrofitting abandoned gas wells into geothermal wells. Mehmood A; Yao J; Fan D; Bongole K; Liu J; Zhang X PLoS One; 2019; 14(8):e0220128. PubMed ID: 31386664 [TBL] [Abstract][Full Text] [Related]
9. Effects of reduced nocturnal temperature on pig performance and energy consumption in swine nursery rooms. Johnston LJ; Brumm MC; Moeller SJ; Pohl S; Shannon MC; Thaler RC J Anim Sci; 2013 Jul; 91(7):3429-35. PubMed ID: 23658358 [TBL] [Abstract][Full Text] [Related]
10. Ammonia and hydrogen sulfide emissions from swine production facilities in North America: a meta-analysis. Liu Z; Powers W; Murphy J; Maghirang R J Anim Sci; 2014 Apr; 92(4):1656-65. PubMed ID: 24492567 [TBL] [Abstract][Full Text] [Related]
11. Life cycle assessment of the carbon intensity of deep geothermal heat systems: A case study from Scotland. McCay AT; Feliks MEJ; Roberts JJ Sci Total Environ; 2019 Oct; 685():208-219. PubMed ID: 31174118 [TBL] [Abstract][Full Text] [Related]
12. The environmental impacts and the carbon intensity of geothermal energy: A case study on the Hellisheiði plant. Paulillo A; Striolo A; Lettieri P Environ Int; 2019 Dec; 133(Pt B):105226. PubMed ID: 31639599 [TBL] [Abstract][Full Text] [Related]
13. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use. de Souza Granja Barros J; Rossi LA; Sartor K Int J Biometeorol; 2016 Aug; 60(8):1271-7. PubMed ID: 26712531 [TBL] [Abstract][Full Text] [Related]
14. Environmental assessment of three egg production systems--Part II. Ammonia, greenhouse gas, and particulate matter emissions. Shepherd TA; Zhao Y; Li H; Stinn JP; Hayes MD; Xin H Poult Sci; 2015 Mar; 94(3):534-43. PubMed ID: 25737568 [TBL] [Abstract][Full Text] [Related]
15. The health of communities living in proximity of geothermal plants generating heat and electricity: A review. Bustaffa E; Cori L; Manzella A; Nuvolone D; Minichilli F; Bianchi F; Gorini F Sci Total Environ; 2020 Mar; 706():135998. PubMed ID: 31862594 [TBL] [Abstract][Full Text] [Related]
16. A comparative life cycle assessment of a cascade heat pump and a natural gas furnace for residential heating purposes. Addo-Binney B; Agelin-Chaab M; Bamfo E; Koohi-Fayegh S Integr Environ Assess Manag; 2022 Mar; 18(2):572-580. PubMed ID: 34273123 [TBL] [Abstract][Full Text] [Related]
17. Geothermal heating: Is it a boon or a bane for bioremediation? Kaur G; Krol M; Brar SK Environ Pollut; 2021 Oct; 287():117609. PubMed ID: 34182401 [TBL] [Abstract][Full Text] [Related]
18. A comprehensive review on experimental, numerical and optimization analysis of EAHE and GSHP systems. Noman S; Tirumalachetty H; Athikesavan MM Environ Sci Pollut Res Int; 2022 Sep; 29(45):67559-67603. PubMed ID: 35927403 [TBL] [Abstract][Full Text] [Related]
19. Total Site Heat Integration benefiting from geothermal energy for heating and cooling implementations. Wang B; Klemeš JJ; Varbanov PS; Shahzad K; Kabli MR J Environ Manage; 2021 Jul; 290():112596. PubMed ID: 33901820 [TBL] [Abstract][Full Text] [Related]
20. Field study on effects of a heat exchanger on broiler performance, energy use, and calculated carbon dioxide emission at commercial broiler farms, and the experiences of farmers using a heat exchanger. Bokkers EA; van Zanten HH; van den Brand H Poult Sci; 2010 Dec; 89(12):2743-50. PubMed ID: 21076115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]