These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
735 related articles for article (PubMed ID: 33182366)
1. Biomimetic Alginate/Gelatin Cross-Linked Hydrogels Supplemented with Polyphosphate for Wound Healing Applications. Wang S; Wang X; Neufurth M; Tolba E; Schepler H; Xiao S; Schröder HC; Müller WEG Molecules; 2020 Nov; 25(21):. PubMed ID: 33182366 [TBL] [Abstract][Full Text] [Related]
2. Nanoparticle-directed and ionically forced polyphosphate coacervation: a versatile and reversible core-shell system for drug delivery. Müller WEG; Tolba E; Wang S; Neufurth M; Lieberwirth I; Ackermann M; Schröder HC; Wang X Sci Rep; 2020 Oct; 10(1):17147. PubMed ID: 33051468 [TBL] [Abstract][Full Text] [Related]
4. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
5. A physiologically active interpenetrating collagen network that supports growth and migration of epidermal keratinocytes: zinc-polyP nanoparticles integrated into compressed collagen. Müller WEG; Schepler H; Tolba E; Wang S; Ackermann M; Muñoz-Espí R; Xiao S; Tan R; She Z; Neufurth M; Schröder HC; Wang X J Mater Chem B; 2020 Jul; 8(27):5892-5902. PubMed ID: 32538419 [TBL] [Abstract][Full Text] [Related]
6. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study. Afjoul H; Shamloo A; Kamali A Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110957. PubMed ID: 32487379 [TBL] [Abstract][Full Text] [Related]
7. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Mousavi A; Mashayekhan S; Baheiraei N; Pourjavadi A Int J Biol Macromol; 2021 Jun; 180():692-708. PubMed ID: 33753199 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Balakrishnan B; Mohanty M; Umashankar PR; Jayakrishnan A Biomaterials; 2005 Nov; 26(32):6335-42. PubMed ID: 15919113 [TBL] [Abstract][Full Text] [Related]
9. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143 [TBL] [Abstract][Full Text] [Related]
11. Differential physical, rheological, and biological properties of rapid in situ gelable hydrogels composed of oxidized alginate and gelatin derived from marine or porcine sources. Liao H; Zhang H; Chen W J Mater Sci Mater Med; 2009 Jun; 20(6):1263-71. PubMed ID: 19184370 [TBL] [Abstract][Full Text] [Related]
12. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Balakrishnan B; Jayakrishnan A Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441 [TBL] [Abstract][Full Text] [Related]
13. Promoting tissue repair using deferoxamine nanoparticles loaded biomimetic gelatin/HA composite hydrogel. Li J; Lu X; Weng M; Wang Y; Tang J; Xu Q; Zhang L; Bai J Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697149 [TBL] [Abstract][Full Text] [Related]
14. Alginate/poloxamer hydrogel obtained by thiol-acrylate photopolymerization for the alleviation of the inflammatory response of human keratinocytes. Popescu I; Turtoi M; Suflet DM; Dinu MV; Darie-Nita RN; Anghelache M; Calin M; Constantin M Int J Biol Macromol; 2021 Jun; 180():418-431. PubMed ID: 33737187 [TBL] [Abstract][Full Text] [Related]
15. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Naghizadeh Z; Karkhaneh A; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097 [TBL] [Abstract][Full Text] [Related]
16. Biofabrication of three-dimensional cellular structures based on gelatin methacrylate-alginate interpenetrating network hydrogel. Krishnamoorthy S; Zhang Z; Xu C J Biomater Appl; 2019 Mar; 33(8):1105-1117. PubMed ID: 30636494 [TBL] [Abstract][Full Text] [Related]
17. A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application. Hajiabbas M; Alemzadeh I; Vossoughi M Carbohydr Polym; 2020 Oct; 245():116465. PubMed ID: 32718603 [TBL] [Abstract][Full Text] [Related]
18. Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting. Wang X; Tolba E; Schröder HC; Neufurth M; Feng Q; Diehl-Seifert B; Müller WE PLoS One; 2014; 9(11):e112497. PubMed ID: 25383549 [TBL] [Abstract][Full Text] [Related]
19. Gelatin improves peroxidase-mediated alginate hydrogel characteristics as a potential injectable hydrogel for soft tissue engineering applications. Morshedloo F; Khoshfetrat AB; Kazemi D; Ahmadian M J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2950-2960. PubMed ID: 32351038 [TBL] [Abstract][Full Text] [Related]
20. Remendable Cross-Linked Alginate/Gelatin Hydrogels Incorporating Nanofibers for Wound Repair and Regeneration. Hong C; Chung H; Lee G; Kim D; Jiang Z; Kim SH; Lee K Biomacromolecules; 2024 Jul; 25(7):4344-4357. PubMed ID: 38917335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]