These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33182792)

  • 1. Bio-Degradable Polyurethane Foams Produced by Liquefied Polyol from Wheat Straw Biomass.
    Serrano L; Rincón E; García A; Rodríguez J; Briones R
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33182792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric pressure liquefaction of dried distillers grains (DDG) and making polyurethane foams from liquefied DDG.
    Yu F; Le Z; Chen P; Liu Y; Lin X; Ruan R
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):235-43. PubMed ID: 18418755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties.
    Lee JH; Kim SH; Oh KW
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of bio-based rigid polyurethane foams synthesized with lignin and castor oil.
    Kim HJ; Jin X; Choi JW
    Sci Rep; 2024 Jun; 14(1):13490. PubMed ID: 38866939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of thermal degradation products from polyurethane foams based on toluene diisocyanate and diphenylmethane diisocyanate on isolated, perfused lung of guinea pig.
    Låstbom L; Colmsjö A; Johansson R; Karlsson D; Melin J; Nordqvist Y; Skarping G
    Scand J Work Environ Health; 2003 Apr; 29(2):152-8. PubMed ID: 12718501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Neem Oil and Its Glyceride on the Structure and Characterization of Castor Oil-Based Polyurethane Foam.
    Liao YH; Su YL; Chen YC
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and properties of polyurethane foams prepared from heavy oil modified by polyols with 4,4'-methylene-diphenylene isocyanate (MDI).
    Zou X; Qin T; Wang Y; Huang L; Han Y; Li Y
    Bioresour Technol; 2012 Jun; 114():654-7. PubMed ID: 22497705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyols from Microwave Liquefied Bagasse and Its Application to Rigid Polyurethane Foam.
    Xie J; Zhai X; Hse CY; Shupe TF; Pan H
    Materials (Basel); 2015 Dec; 8(12):8496-8509. PubMed ID: 28793725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Pathway toward a New Era of Open-Cell Polyurethane Foams-Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties.
    Kurańska M; Malewska E; Polaczek K; Prociak A; Kubacka J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol.
    de Luca Bossa F; Verdolotti L; Russo V; Campaner P; Minigher A; Lama GC; Boggioni L; Tesser R; Lavorgna M
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Thermal Insulating Properties of Renewable Polyol Based Polyurethane Foams Reinforced with Chicken Feathers.
    Aranberri I; Montes S; Wesołowska E; Rekondo A; Wrześniewska-Tosik K; Grande HJ
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31816975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Bioresources to Thermal Insulation Materials: Synthesis and Properties of Two-Component Open-Cell Spray Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil.
    Polaczek K; Kurańska M; Malewska E; Czerwicka-Pach M; Prociak A
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production.
    Xue BL; Wen JL; Sun RC
    Materials (Basel); 2015 Feb; 8(2):586-599. PubMed ID: 28787959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale-Up and Testing of Polyurethane Bio-Foams as Potential Cryogenic Insulation Materials.
    Kurańska M; Cabulis U; Prociak A; Polaczek K; Uram K; Kirpluks M
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Walnut Shells-Derived Biopolyol in the Synthesis of Rigid Polyurethane Foams.
    Członka S; Strąkowska A; Kairytė A
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically Functionalized Cellulose Nanocrystals as Reactive Filler in Bio-Based Polyurethane Foams.
    Coccia F; Gryshchuk L; Moimare P; Bossa FL; Santillo C; Barak-Kulbak E; Verdolotti L; Boggioni L; Lama GC
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Selected Bio-Components on the Cell Structure and Properties of Rigid Polyurethane Foams.
    Prociak A; Kucała M; Kurańska M; Barczewski M
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyols and Polyurethane Foams Based on Water-Soluble Chitosan.
    Strzałka AM; Lubczak J
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Polyurethane Foams from Bio-Based Polyols: Prepolymer Synthesis and Characterization.
    Losio S; Cifarelli A; Vignali A; Tomaselli S; Bertini F
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Polyurethane Foams from Epoxidized Vegetable Oils and a Bio-Based Diisocyanate.
    Cifarelli A; Boggioni L; Vignali A; Tritto I; Bertini F; Losio S
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33670627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.